|image0|
- `Live Demo <http://alphatechadmin.pythonanywhere.com>`__
--------------
|CircleCI| |PyPI Python Versions| |PyPI| |Conda| |ReadTheDocs| |codecov|
|Downloads| |Open in VS Code|
What is it?
-----------
D-Tale is the combination of a Flask back-end and a React front-end to
bring you an easy way to view & analyze Pandas data structures. It
integrates seamlessly with ipython notebooks & python/ipython terminals.
Currently this tool supports such Pandas objects as DataFrame, Series,
MultiIndex, DatetimeIndex & RangeIndex.
Origins
-------
D-Tale was the product of a SAS to Python conversion. What was
originally a perl script wrapper on top of SAS’s ``insight`` function is
now a lightweight web client on top of Pandas data structures.
In The News
-----------
- `4 Libraries that can perform EDA in one line of python
code <https://towardsdatascience.com/4-libraries-that-can-perform-eda-in-one-line-of-python-code-b13938a06ae>`__
- `React Status <https://react.statuscode.com/issues/204>`__
- `KDNuggets <https://www.kdnuggets.com/2020/08/bring-pandas-dataframes-life-d-tale.html>`__
- `Man Institute <https://www.man.com/maninstitute/d-tale>`__ (warning:
contains deprecated functionality)
- `Python
Bytes <https://pythonbytes.fm/episodes/show/169/jupyter-notebooks-natively-on-your-ipad>`__
- `FlaskCon 2020 <https://www.youtube.com/watch?v=BNgolmUWBp4&t=33s>`__
- `San Diego
Python <https://www.youtube.com/watch?v=fLsGur5YqeE&t=29s>`__
- `Medium: towards data
science <https://towardsdatascience.com/introduction-to-d-tale-5eddd81abe3f>`__
- `Medium: Exploratory Data Analysis – Using
D-Tale <https://medium.com/da-tum/exploratory-data-analysis-1-4-using-d-tale-99a2c267db79>`__
- `EOD Notes: Using python and dtale to analyze
correlations <https://www.google.com/amp/s/eod-notes.com/2020/05/07/using-python-and-dtale-to-analyze-correlations/amp/>`__
- `Data Exploration is Now Super Easy w/
D-Tale <https://dibyendudeb.com/d-tale-data-exploration-tool/>`__
- `Practical Business
Python <https://pbpython.com/dataframe-gui-overview.html>`__
Tutorials
---------
- `Pip Install Python YouTube
Channel <https://m.youtube.com/watch?v=0RihZNdQc7k&feature=youtu.be>`__
- `machine_learning_2019 <https://www.youtube.com/watch?v=-egtEUVBy9c>`__
- `D-Tale The Best Library To Perform Exploratory Data Analysis Using
Single Line Of
Code🔥🔥🔥🔥 <https://www.youtube.com/watch?v=xSXGcuiEzUc>`__
- `Explore and Analyze Pandas Data Structures w/
D-Tale <https://m.youtube.com/watch?v=JUu5IYVGqCg>`__
- `Data Preprocessing simplest method
🔥 <https://www.youtube.com/watch?v=Q2kMNPKgN4g>`__
## Related Resources
- `Adventures In Flask While Developing
D-Tale <https://github.com/man-group/dtale/blob/master/docs/FlaskCon/FlaskAdventures.md>`__
- `Adding Range Selection to
react-virtualized <https://github.com/man-group/dtale/blob/master/docs/RANGE_SELECTION.md>`__
- `Building Draggable/Resizable
Modals <https://github.com/man-group/dtale/blob/master/docs/DRAGGABLE_RESIZABLE_MODALS.md>`__
- `Embedding Flask Apps within
Streamlit <https://github.com/man-group/dtale/blob/master/docs/EMBEDDED_STREAMLIT.md>`__
Where To get It
---------------
The source code is currently hosted on GitHub at:
https://github.com/man-group/dtale
Binary installers for the latest released version are available at the
`Python package index <https://pypi.org/project/dtale>`__ and on conda
using `conda-forge <https://github.com/conda-forge/dtale-feedstock>`__.
.. code:: sh
# conda
conda install dtale -c conda-forge
# if you want to also use "Export to PNG" for charts
conda install -c plotly python-kaleido
.. code:: sh
# or PyPI
pip install dtale
Getting Started
---------------
======== =========
PyCharm jupyter
======== =========
|image9| |image10|
======== =========
Python Terminal
~~~~~~~~~~~~~~~
This comes courtesy of PyCharm |image11| Feel free to invoke ``python``
or ``ipython`` directly and use the commands in the screenshot above and
it should work
Issues With Windows Firewall
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you run into issues with viewing D-Tale in your browser on Windows
please try making Python public under “Allowed Apps” in your Firewall
configuration. Here is a nice article: `How to Allow Apps to Communicate
Through the Windows
Firewall <https://www.howtogeek.com/howto/uncategorized/how-to-create-exceptions-in-windows-vista-firewall/>`__
Additional functions available programmatically
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
import dtale
import pandas as pd
df = pd.DataFrame([dict(a=1,b=2,c=3)])
# Assigning a reference to a running D-Tale process
d = dtale.show(df)
# Accessing data associated with D-Tale process
tmp = d.data.copy()
tmp['d'] = 4
# Altering data associated with D-Tale process
# FYI: this will clear any front-end settings you have at the time for this process (filter, sorts, formatting)
d.data = tmp
# Shutting down D-Tale process
d.kill()
# using Python's `webbrowser` package it will try and open your server's default browser to this process
d.open_browser()
# There is also some helpful metadata about the process
d._data_id # the process's data identifier
d._url # the url to access the process
d2 = dtale.get_instance(d._data_id) # returns a new reference to the instance running at that data_id
dtale.instances() # prints a list of all ids & urls of running D-Tale sessions
License
-------
D-Tale is licensed under the GNU LGPL v2.1. A copy of which is included
in
`LICENSE <https://github.com/man-group/dtale/blob/master/LICENSE.md>`__
Additional Documentation
------------------------
Located on the main `github repo <https://github.com/man-group/dtale>`__
.. |image0| image:: https://raw.githubusercontent.com/aschonfeld/dtale-media/master/images/Title.png
:target: https://github.com/man-group/dtale
.. |CircleCI| image:: https://circleci.com/gh/man-group/dtale.svg?style=shield&circle-token=4b67588a87157cc03b484fb96be438f70b5cd151
:target: https://circleci.com/gh/man-group/dtale
.. |PyPI Python Versions| image:: https://img.shields.io/pypi/pyversions/dtale.svg
:target: https://pypi.python.org/pypi/dtale/
.. |PyPI| image:: https://img.shields.io/pypi/v/dtale
:target: https://pypi.org/project/dtale/
.. |Conda| image:: https://img.shields.io/conda/v/conda-forge/dtale
:target: https://anaconda.org/conda-forge/dtale
.. |ReadTheDocs| image:: https://readthedocs.org/projects/dtale/badge
:target: https://dtale.readthedocs.io
.. |codecov| image:: https://codecov.io/gh/man-group/dtale/branch/master/graph/badge.svg
:target: https://codecov.io/gh/man-group/dtale
.. |Downloads| image:: https://pepy.tech/badge/dtale
:target: https://pepy.tech/project/dtale
.. |Open in VS Code| image:: https://img.shields.io/badge/Visual_Studio_Code-0078D4?style=for-the-badge&logo=visual%20studio%20code&logoColor=white
:target: https://open.vscode.dev/man-group/dtale
.. |image9| image:: https://raw.githubusercontent.com/aschonfeld/dtale-media/master/gifs/dtale_demo_mini.gif
.. |image10| image:: https://raw.githubusercontent.com/aschonfeld/dtale-media/master/gifs/dtale_ipython.gif
.. |image11| image:: https://raw.githubusercontent.com/aschonfeld/dtale-media/master/images/Python_Terminal.png
Raw data
{
"_id": null,
"home_page": "https://github.com/man-group/dtale",
"name": "dtale",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "numeric, pandas, visualization, flask",
"author": "MAN Alpha Technology",
"author_email": "ManAlphaTech@man.com",
"download_url": "https://files.pythonhosted.org/packages/98/76/8b46f34966a52507069a719770e9f2ad0baeae5c8d462a0c8f72eb0b6e54/dtale-3.16.1.tar.gz",
"platform": null,
"description": "|image0|\n\n- `Live Demo <http://alphatechadmin.pythonanywhere.com>`__\n\n--------------\n\n|CircleCI| |PyPI Python Versions| |PyPI| |Conda| |ReadTheDocs| |codecov|\n|Downloads| |Open in VS Code|\n\nWhat is it?\n-----------\n\nD-Tale is the combination of a Flask back-end and a React front-end to\nbring you an easy way to view & analyze Pandas data structures. It\nintegrates seamlessly with ipython notebooks & python/ipython terminals.\nCurrently this tool supports such Pandas objects as DataFrame, Series,\nMultiIndex, DatetimeIndex & RangeIndex.\n\nOrigins\n-------\n\nD-Tale was the product of a SAS to Python conversion. What was\noriginally a perl script wrapper on top of SAS\u2019s ``insight`` function is\nnow a lightweight web client on top of Pandas data structures.\n\nIn The News\n-----------\n\n- `4 Libraries that can perform EDA in one line of python\n code <https://towardsdatascience.com/4-libraries-that-can-perform-eda-in-one-line-of-python-code-b13938a06ae>`__\n- `React Status <https://react.statuscode.com/issues/204>`__\n- `KDNuggets <https://www.kdnuggets.com/2020/08/bring-pandas-dataframes-life-d-tale.html>`__\n- `Man Institute <https://www.man.com/maninstitute/d-tale>`__ (warning:\n contains deprecated functionality)\n- `Python\n Bytes <https://pythonbytes.fm/episodes/show/169/jupyter-notebooks-natively-on-your-ipad>`__\n- `FlaskCon 2020 <https://www.youtube.com/watch?v=BNgolmUWBp4&t=33s>`__\n- `San Diego\n Python <https://www.youtube.com/watch?v=fLsGur5YqeE&t=29s>`__\n- `Medium: towards data\n science <https://towardsdatascience.com/introduction-to-d-tale-5eddd81abe3f>`__\n- `Medium: Exploratory Data Analysis \u2013 Using\n D-Tale <https://medium.com/da-tum/exploratory-data-analysis-1-4-using-d-tale-99a2c267db79>`__\n- `EOD Notes: Using python and dtale to analyze\n correlations <https://www.google.com/amp/s/eod-notes.com/2020/05/07/using-python-and-dtale-to-analyze-correlations/amp/>`__\n- `Data Exploration is Now Super Easy w/\n D-Tale <https://dibyendudeb.com/d-tale-data-exploration-tool/>`__\n- `Practical Business\n Python <https://pbpython.com/dataframe-gui-overview.html>`__\n\nTutorials\n---------\n\n- `Pip Install Python YouTube\n Channel <https://m.youtube.com/watch?v=0RihZNdQc7k&feature=youtu.be>`__\n- `machine_learning_2019 <https://www.youtube.com/watch?v=-egtEUVBy9c>`__\n- `D-Tale The Best Library To Perform Exploratory Data Analysis Using\n Single Line Of\n Code\ud83d\udd25\ud83d\udd25\ud83d\udd25\ud83d\udd25 <https://www.youtube.com/watch?v=xSXGcuiEzUc>`__\n- `Explore and Analyze Pandas Data Structures w/\n D-Tale <https://m.youtube.com/watch?v=JUu5IYVGqCg>`__\n- `Data Preprocessing simplest method\n \ud83d\udd25 <https://www.youtube.com/watch?v=Q2kMNPKgN4g>`__\n\n## Related Resources\n\n- `Adventures In Flask While Developing\n D-Tale <https://github.com/man-group/dtale/blob/master/docs/FlaskCon/FlaskAdventures.md>`__\n- `Adding Range Selection to\n react-virtualized <https://github.com/man-group/dtale/blob/master/docs/RANGE_SELECTION.md>`__\n- `Building Draggable/Resizable\n Modals <https://github.com/man-group/dtale/blob/master/docs/DRAGGABLE_RESIZABLE_MODALS.md>`__\n- `Embedding Flask Apps within\n Streamlit <https://github.com/man-group/dtale/blob/master/docs/EMBEDDED_STREAMLIT.md>`__\n\nWhere To get It\n---------------\n\nThe source code is currently hosted on GitHub at:\nhttps://github.com/man-group/dtale\n\nBinary installers for the latest released version are available at the\n`Python package index <https://pypi.org/project/dtale>`__ and on conda\nusing `conda-forge <https://github.com/conda-forge/dtale-feedstock>`__.\n\n.. code:: sh\n\n # conda\n conda install dtale -c conda-forge\n # if you want to also use \"Export to PNG\" for charts\n conda install -c plotly python-kaleido\n\n.. code:: sh\n\n # or PyPI\n pip install dtale\n\nGetting Started\n---------------\n\n======== =========\nPyCharm jupyter\n======== =========\n|image9| |image10|\n======== =========\n\nPython Terminal\n~~~~~~~~~~~~~~~\n\nThis comes courtesy of PyCharm |image11| Feel free to invoke ``python``\nor ``ipython`` directly and use the commands in the screenshot above and\nit should work\n\nIssues With Windows Firewall\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\nIf you run into issues with viewing D-Tale in your browser on Windows\nplease try making Python public under \u201cAllowed Apps\u201d in your Firewall\nconfiguration. Here is a nice article: `How to Allow Apps to Communicate\nThrough the Windows\nFirewall <https://www.howtogeek.com/howto/uncategorized/how-to-create-exceptions-in-windows-vista-firewall/>`__\n\nAdditional functions available programmatically\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n.. code:: python\n\n import dtale\n import pandas as pd\n\n df = pd.DataFrame([dict(a=1,b=2,c=3)])\n\n # Assigning a reference to a running D-Tale process\n d = dtale.show(df)\n\n # Accessing data associated with D-Tale process\n tmp = d.data.copy()\n tmp['d'] = 4\n\n # Altering data associated with D-Tale process\n # FYI: this will clear any front-end settings you have at the time for this process (filter, sorts, formatting)\n d.data = tmp\n\n # Shutting down D-Tale process\n d.kill()\n\n # using Python's `webbrowser` package it will try and open your server's default browser to this process\n d.open_browser()\n\n # There is also some helpful metadata about the process\n d._data_id # the process's data identifier\n d._url # the url to access the process\n\n d2 = dtale.get_instance(d._data_id) # returns a new reference to the instance running at that data_id\n\n dtale.instances() # prints a list of all ids & urls of running D-Tale sessions\n\nLicense\n-------\n\nD-Tale is licensed under the GNU LGPL v2.1. A copy of which is included\nin\n`LICENSE <https://github.com/man-group/dtale/blob/master/LICENSE.md>`__\n\nAdditional Documentation\n------------------------\n\nLocated on the main `github repo <https://github.com/man-group/dtale>`__\n\n.. |image0| image:: https://raw.githubusercontent.com/aschonfeld/dtale-media/master/images/Title.png\n :target: https://github.com/man-group/dtale\n.. |CircleCI| image:: https://circleci.com/gh/man-group/dtale.svg?style=shield&circle-token=4b67588a87157cc03b484fb96be438f70b5cd151\n :target: https://circleci.com/gh/man-group/dtale\n.. |PyPI Python Versions| image:: https://img.shields.io/pypi/pyversions/dtale.svg\n :target: https://pypi.python.org/pypi/dtale/\n.. |PyPI| image:: https://img.shields.io/pypi/v/dtale\n :target: https://pypi.org/project/dtale/\n.. |Conda| image:: https://img.shields.io/conda/v/conda-forge/dtale\n :target: https://anaconda.org/conda-forge/dtale\n.. |ReadTheDocs| image:: https://readthedocs.org/projects/dtale/badge\n :target: https://dtale.readthedocs.io\n.. |codecov| image:: https://codecov.io/gh/man-group/dtale/branch/master/graph/badge.svg\n :target: https://codecov.io/gh/man-group/dtale\n.. |Downloads| image:: https://pepy.tech/badge/dtale\n :target: https://pepy.tech/project/dtale\n.. |Open in VS Code| image:: https://img.shields.io/badge/Visual_Studio_Code-0078D4?style=for-the-badge&logo=visual%20studio%20code&logoColor=white\n :target: https://open.vscode.dev/man-group/dtale\n.. |image9| image:: https://raw.githubusercontent.com/aschonfeld/dtale-media/master/gifs/dtale_demo_mini.gif\n.. |image10| image:: https://raw.githubusercontent.com/aschonfeld/dtale-media/master/gifs/dtale_ipython.gif\n.. |image11| image:: https://raw.githubusercontent.com/aschonfeld/dtale-media/master/images/Python_Terminal.png\n",
"bugtrack_url": null,
"license": "LGPL",
"summary": "Web Client for Visualizing Pandas Objects",
"version": "3.16.1",
"project_urls": {
"Homepage": "https://github.com/man-group/dtale"
},
"split_keywords": [
"numeric",
" pandas",
" visualization",
" flask"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d95accb7d9b990618364f7a4636325e8616ac69e7766f5c993272da15563bd38",
"md5": "ec21e0adc8f2da2074ac148cce733cf8",
"sha256": "3647959ca4f22bff11e3c02bbbd06f4a2847eeb96bd7975da765418968c8daaa"
},
"downloads": -1,
"filename": "dtale-3.16.1-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "ec21e0adc8f2da2074ac148cce733cf8",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 14703810,
"upload_time": "2024-12-13T16:37:39",
"upload_time_iso_8601": "2024-12-13T16:37:39.243833Z",
"url": "https://files.pythonhosted.org/packages/d9/5a/ccb7d9b990618364f7a4636325e8616ac69e7766f5c993272da15563bd38/dtale-3.16.1-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "98768b46f34966a52507069a719770e9f2ad0baeae5c8d462a0c8f72eb0b6e54",
"md5": "e263aa51dbee01b1af5661a35bd9dd88",
"sha256": "98a5821c352817ceeac078f079d92de22f5921c8cf5b466e2163a438271ff0a4"
},
"downloads": -1,
"filename": "dtale-3.16.1.tar.gz",
"has_sig": false,
"md5_digest": "e263aa51dbee01b1af5661a35bd9dd88",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 14296351,
"upload_time": "2024-12-13T16:37:45",
"upload_time_iso_8601": "2024-12-13T16:37:45.543795Z",
"url": "https://files.pythonhosted.org/packages/98/76/8b46f34966a52507069a719770e9f2ad0baeae5c8d462a0c8f72eb0b6e54/dtale-3.16.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-13 16:37:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "man-group",
"github_project": "dtale",
"travis_ci": false,
"coveralls": true,
"github_actions": false,
"circle": true,
"requirements": [
{
"name": "lz4",
"specs": [
[
"<=",
"2.2.1"
]
]
},
{
"name": "lz4",
"specs": [
[
"<=",
"3.1.10"
]
]
},
{
"name": "lz4",
"specs": []
},
{
"name": "beautifulsoup4",
"specs": [
[
"!=",
"4.13.0b2"
]
]
},
{
"name": "beautifulsoup4",
"specs": [
[
"<=",
"4.9.3"
]
]
},
{
"name": "Brotli",
"specs": [
[
"<=",
"1.0.9"
]
]
},
{
"name": "certifi",
"specs": [
[
"<=",
"2021.10.8"
]
]
},
{
"name": "certifi",
"specs": []
},
{
"name": "cycler",
"specs": []
},
{
"name": "cycler",
"specs": [
[
"<=",
"0.11.0"
]
]
},
{
"name": "cycler",
"specs": [
[
"<=",
"0.10.0"
]
]
},
{
"name": "dash",
"specs": [
[
"<=",
"1.21.0"
]
]
},
{
"name": "dash",
"specs": [
[
"<=",
"2.0.0"
]
]
},
{
"name": "dash",
"specs": [
[
"!=",
"2.13.0"
]
]
},
{
"name": "dash",
"specs": []
},
{
"name": "dash-bootstrap-components",
"specs": [
[
"==",
"0.13.1"
]
]
},
{
"name": "dash-bootstrap-components",
"specs": []
},
{
"name": "dash-colorscales",
"specs": []
},
{
"name": "dash_daq",
"specs": []
},
{
"name": "dataclasses",
"specs": [
[
"<",
"1"
]
]
},
{
"name": "decorator",
"specs": [
[
"<=",
"4.4.2"
]
]
},
{
"name": "et_xmlfile",
"specs": [
[
"<=",
"1.0.1"
]
]
},
{
"name": "et_xmlfile",
"specs": []
},
{
"name": "Flask",
"specs": [
[
"<=",
"1.1.4"
]
]
},
{
"name": "Flask",
"specs": [
[
"<",
"2.3"
]
]
},
{
"name": "Flask",
"specs": []
},
{
"name": "Flask-Compress",
"specs": [
[
"<=",
"1.15"
]
]
},
{
"name": "Flask-Compress",
"specs": []
},
{
"name": "future",
"specs": [
[
">=",
"0.14.0"
]
]
},
{
"name": "immutables",
"specs": [
[
"<=",
"0.19"
]
]
},
{
"name": "itsdangerous",
"specs": [
[
"<=",
"1.1.0"
]
]
},
{
"name": "itsdangerous",
"specs": [
[
"<=",
"2.1.2"
]
]
},
{
"name": "itsdangerous",
"specs": []
},
{
"name": "joblib",
"specs": [
[
"<=",
"1.1.1"
]
]
},
{
"name": "joblib",
"specs": [
[
"<=",
"1.3.2"
]
]
},
{
"name": "kaleido",
"specs": [
[
"<=",
"0.2.1"
]
]
},
{
"name": "kaleido",
"specs": []
},
{
"name": "kiwisolver",
"specs": [
[
"<=",
"1.1.0"
]
]
},
{
"name": "kiwisolver",
"specs": [
[
"<=",
"1.4.5"
]
]
},
{
"name": "MarkupSafe",
"specs": [
[
"<=",
"1.1.1"
]
]
},
{
"name": "MarkupSafe",
"specs": [
[
"<=",
"2.0.1"
]
]
},
{
"name": "MarkupSafe",
"specs": [
[
"<=",
"2.1.5"
]
]
},
{
"name": "MarkupSafe",
"specs": [
[
"<=",
"2.1.5"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"<=",
"2.2.5"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"<=",
"3.3.4"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"<=",
"3.5.3"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"<=",
"3.7.2"
]
]
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "missingno",
"specs": []
},
{
"name": "networkx",
"specs": [
[
"<=",
"2.2"
]
]
},
{
"name": "networkx",
"specs": [
[
"<=",
"2.4"
]
]
},
{
"name": "networkx",
"specs": [
[
"<=",
"2.5.1"
]
]
},
{
"name": "networkx",
"specs": [
[
"<=",
"2.6.3"
]
]
},
{
"name": "networkx",
"specs": [
[
"<=",
"3.1"
]
]
},
{
"name": "networkx",
"specs": [
[
"<=",
"3.2.1"
]
]
},
{
"name": "networkx",
"specs": []
},
{
"name": "numpy",
"specs": [
[
"<=",
"1.16.6"
]
]
},
{
"name": "numpy",
"specs": []
},
{
"name": "openpyxl",
"specs": [
[
"<=",
"2.6.4"
]
]
},
{
"name": "openpyxl",
"specs": [
[
"!=",
"3.2.0b1"
]
]
},
{
"name": "packaging",
"specs": [
[
"<=",
"21.0"
]
]
},
{
"name": "packaging",
"specs": [
[
"<=",
"21.0"
]
]
},
{
"name": "pandas",
"specs": []
},
{
"name": "plotly",
"specs": [
[
"<=",
"4.14.3"
]
]
},
{
"name": "plotly",
"specs": []
},
{
"name": "pyparsing",
"specs": [
[
"<=",
"2.4.7"
]
]
},
{
"name": "pyparsing",
"specs": [
[
"<=",
"3.0.9"
]
]
},
{
"name": "pyparsing",
"specs": [
[
"<=",
"3.0.9"
]
]
},
{
"name": "pyparsing",
"specs": [
[
"<=",
"3.0.9"
]
]
},
{
"name": "requests",
"specs": []
},
{
"name": "requests",
"specs": [
[
"<=",
"2.31.0"
]
]
},
{
"name": "requests",
"specs": [
[
"<=",
"2.27.1"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
"<=",
"0.20.4"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
"<=",
"0.24.2"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
"<=",
"1.0.2"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
"<=",
"1.3.2"
]
]
},
{
"name": "scikit-learn",
"specs": []
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.2.3"
]
]
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.5.4"
]
]
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.5.4"
]
]
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.5.4"
]
]
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.5.4"
]
]
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.5.4"
]
]
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.5.4"
]
]
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.5.4"
]
]
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.7.3"
]
]
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.10.1"
]
]
},
{
"name": "scipy",
"specs": [
[
"<=",
"1.13.1"
]
]
},
{
"name": "scipy",
"specs": [
[
"!=",
"1.12.0rc1"
],
[
"!=",
"1.14.0"
],
[
"!=",
"1.14.0rc1"
],
[
"!=",
"1.14.0rc2"
]
]
},
{
"name": "seaborn",
"specs": [
[
"<=",
"0.9.1"
]
]
},
{
"name": "seaborn",
"specs": [
[
"<=",
"0.11.2"
]
]
},
{
"name": "seaborn",
"specs": [
[
"<=",
"0.12.2"
]
]
},
{
"name": "seaborn",
"specs": []
},
{
"name": "squarify",
"specs": []
},
{
"name": "statsmodels",
"specs": [
[
"<=",
"0.10.2"
]
]
},
{
"name": "statsmodels",
"specs": [
[
"<=",
"0.12.2"
]
]
},
{
"name": "statsmodels",
"specs": [
[
"<=",
"0.12.2"
]
]
},
{
"name": "statsmodels",
"specs": [
[
"<=",
"0.12.2"
]
]
},
{
"name": "statsmodels",
"specs": [
[
"<=",
"0.12.2"
]
]
},
{
"name": "statsmodels",
"specs": [
[
"<=",
"0.12.2"
]
]
},
{
"name": "statsmodels",
"specs": [
[
"<=",
"0.12.2"
]
]
},
{
"name": "statsmodels",
"specs": [
[
"<=",
"0.12.2"
]
]
},
{
"name": "statsmodels",
"specs": [
[
"<=",
"0.12.2"
]
]
},
{
"name": "statsmodels",
"specs": [
[
"<=",
"0.14.1"
]
]
},
{
"name": "statsmodels",
"specs": []
},
{
"name": "strsimpy",
"specs": []
},
{
"name": "six",
"specs": []
},
{
"name": "tenacity",
"specs": [
[
"<=",
"7.0.0"
]
]
},
{
"name": "threadpoolctl",
"specs": [
[
"<=",
"3.1.0"
]
]
},
{
"name": "threadpoolctl",
"specs": [
[
"<=",
"3.1.0"
]
]
},
{
"name": "urllib3",
"specs": [
[
"<=",
"2.0.7"
]
]
},
{
"name": "werkzeug",
"specs": [
[
"<=",
"1.0.1"
]
]
},
{
"name": "werkzeug",
"specs": [
[
"==",
"2.2.3"
]
]
},
{
"name": "werkzeug",
"specs": []
},
{
"name": "xarray",
"specs": [
[
"<=",
"0.11.3"
]
]
},
{
"name": "xarray",
"specs": []
},
{
"name": "xlrd",
"specs": []
},
{
"name": "zipp",
"specs": [
[
"<=",
"3.15.0"
]
]
},
{
"name": "zstandard",
"specs": [
[
"<=",
"0.20.0"
]
]
},
{
"name": "zstandard",
"specs": [
[
"<=",
"0.21.0"
]
]
},
{
"name": "zstandard",
"specs": [
[
"<=",
"0.14.0"
]
]
}
],
"lcname": "dtale"
}