fdfat


Namefdfat JSON
Version 0.2.6.1 PyPI version JSON
download
home_pagehttps://github.com/RyanDam/Fast-6DoF-Face-Alignment-and-Tracking
SummaryFast 6DoF Face Alignment and Tracking
upload_time2023-09-09 05:49:07
maintainer
docs_urlNone
authorRyanDam
requires_python>=3.7
licenseGPL-3.0
keywords machine-learning deep-learning vision ml dl ai
VCS
bugtrack_url
requirements matplotlib opencv-python Pillow PyYAML requests scipy torch torchvision tqdm filterpy pandas seaborn psutil
Travis-CI No Travis.
coveralls test coverage No coveralls.
            

Working in progess...

# Fast 6DoF Face Alignment and Tracking

This project purpose is to implement Ultra lightweight 6 DoF Face Alignment and Tracking. This project is capable of realtime tracking face for mobile device.

## Installation

### Requirements

- torch >= 2.0
- autoalbument >= 1.3.1

### Install

[![PyPI version](https://badge.fury.io/py/fdfat.svg)](https://badge.fury.io/py/fdfat)

```
pip install -U fdfat
```

## Model Zoo

TODO: add best model

## Training

### Prepare the dataset

This project use 3d 68 points of landmark (difference from the original 300W dataset). Please go to [FaceSynthetics](https://github.com/microsoft/FaceSynthetics) to download the dataset (100K one) and extract it to your disk.

Create your dataset yaml file with the following info:

```yaml
base_path: <path-to-face-synthesis-dataset>/dataset_100000
train: <path-to-list-train-text-file.txt>
val: <path-to-list-val-text-file.txt>
test: <path-to-list-test-text-file.txt>
```

note: you can use list train file in `datasets/FaceSynthetics` for reference.

### Start training

```bash
fdfat --data <path-to-your-dataset-yaml> --model LightWeightModel
```

For complete list of parameter, please folow this sample config file: [fdfat/cfg/default.yaml](fdfat/cfg/default.yaml)

## Validation

```bash
fdfat --task val --data <path-to-your-dataset-yaml> --model LightWeightModel
```

## Predict

```bash
fdfat --task predict --model LightWeightModel --checkpoint <path-to-checkoint> --input <path-to-test-img>
```

## Export

```bash
fdfat --task export --model LightWeightModel --checkpoint <path-to-checkoint> --export_format tflite
```

## Credit

- [YOLOv8](https://github.com/ultralytics/ultralytics) : Thanks for ultralytics awesome project, I borrow some code from here.
- [Ultra-Light-Fast-Generic-Face-Detector-1MB](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB) : Thanks for your lightweight face detector
- [FaceSynthetics](https://github.com/microsoft/FaceSynthetics) : Thanks for expressive face landmark dataset, it's a good starting point
- [head-pose-estimation](https://github.com/yinguobing/head-pose-estimation) : Thanks for head pose estimation code


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/RyanDam/Fast-6DoF-Face-Alignment-and-Tracking",
    "name": "fdfat",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "machine-learning,deep-learning,vision,ML,DL,AI",
    "author": "RyanDam",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/84/b0/44091ef4a37c6f8bddb4da7185d78870f45d194399942cbe39e594ab4e4a/fdfat-0.2.6.1.tar.gz",
    "platform": null,
    "description": "\n\nWorking in progess...\n\n# Fast 6DoF Face Alignment and Tracking\n\nThis project purpose is to implement Ultra lightweight 6 DoF Face Alignment and Tracking. This project is capable of realtime tracking face for mobile device.\n\n## Installation\n\n### Requirements\n\n- torch >= 2.0\n- autoalbument >= 1.3.1\n\n### Install\n\n[![PyPI version](https://badge.fury.io/py/fdfat.svg)](https://badge.fury.io/py/fdfat)\n\n```\npip install -U fdfat\n```\n\n## Model Zoo\n\nTODO: add best model\n\n## Training\n\n### Prepare the dataset\n\nThis project use 3d 68 points of landmark (difference from the original 300W dataset). Please go to [FaceSynthetics](https://github.com/microsoft/FaceSynthetics) to download the dataset (100K one) and extract it to your disk.\n\nCreate your dataset yaml file with the following info:\n\n```yaml\nbase_path: <path-to-face-synthesis-dataset>/dataset_100000\ntrain: <path-to-list-train-text-file.txt>\nval: <path-to-list-val-text-file.txt>\ntest: <path-to-list-test-text-file.txt>\n```\n\nnote: you can use list train file in `datasets/FaceSynthetics` for reference.\n\n### Start training\n\n```bash\nfdfat --data <path-to-your-dataset-yaml> --model LightWeightModel\n```\n\nFor complete list of parameter, please folow this sample config file: [fdfat/cfg/default.yaml](fdfat/cfg/default.yaml)\n\n## Validation\n\n```bash\nfdfat --task val --data <path-to-your-dataset-yaml> --model LightWeightModel\n```\n\n## Predict\n\n```bash\nfdfat --task predict --model LightWeightModel --checkpoint <path-to-checkoint> --input <path-to-test-img>\n```\n\n## Export\n\n```bash\nfdfat --task export --model LightWeightModel --checkpoint <path-to-checkoint> --export_format tflite\n```\n\n## Credit\n\n- [YOLOv8](https://github.com/ultralytics/ultralytics) : Thanks for ultralytics awesome project, I borrow some code from here.\n- [Ultra-Light-Fast-Generic-Face-Detector-1MB](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB) : Thanks for your lightweight face detector\n- [FaceSynthetics](https://github.com/microsoft/FaceSynthetics) : Thanks for expressive face landmark dataset, it's a good starting point\n- [head-pose-estimation](https://github.com/yinguobing/head-pose-estimation) : Thanks for head pose estimation code\n\n",
    "bugtrack_url": null,
    "license": "GPL-3.0",
    "summary": "Fast 6DoF Face Alignment and Tracking",
    "version": "0.2.6.1",
    "project_urls": {
        "Homepage": "https://github.com/RyanDam/Fast-6DoF-Face-Alignment-and-Tracking"
    },
    "split_keywords": [
        "machine-learning",
        "deep-learning",
        "vision",
        "ml",
        "dl",
        "ai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7e58aea229fc13462367832b66435e98e2afb0c012e7912b7829c176a4057a01",
                "md5": "1d5d3b510832b0ae7c50d8b5d59c5405",
                "sha256": "aad19eb60071662de069ba5cf98dd8f5cfcdffcd010a23110185a0c74338f07f"
            },
            "downloads": -1,
            "filename": "fdfat-0.2.6.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1d5d3b510832b0ae7c50d8b5d59c5405",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 63214,
            "upload_time": "2023-09-09T05:49:05",
            "upload_time_iso_8601": "2023-09-09T05:49:05.409434Z",
            "url": "https://files.pythonhosted.org/packages/7e/58/aea229fc13462367832b66435e98e2afb0c012e7912b7829c176a4057a01/fdfat-0.2.6.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "84b044091ef4a37c6f8bddb4da7185d78870f45d194399942cbe39e594ab4e4a",
                "md5": "006ede973bdac50d7c57bb57ab2006ac",
                "sha256": "544ecc50373ec8700ba29ca2e10b5f2adaabd53d59ce38c60e166976d06583e9"
            },
            "downloads": -1,
            "filename": "fdfat-0.2.6.1.tar.gz",
            "has_sig": false,
            "md5_digest": "006ede973bdac50d7c57bb57ab2006ac",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 45990,
            "upload_time": "2023-09-09T05:49:07",
            "upload_time_iso_8601": "2023-09-09T05:49:07.431276Z",
            "url": "https://files.pythonhosted.org/packages/84/b0/44091ef4a37c6f8bddb4da7185d78870f45d194399942cbe39e594ab4e4a/fdfat-0.2.6.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-09 05:49:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "RyanDam",
    "github_project": "Fast-6DoF-Face-Alignment-and-Tracking",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.2.2"
                ]
            ]
        },
        {
            "name": "opencv-python",
            "specs": [
                [
                    ">=",
                    "4.6.0"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    ">=",
                    "7.1.2"
                ]
            ]
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    ">=",
                    "5.3.1"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.23.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.4.1"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.7.0"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    ">=",
                    "0.8.1"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    ">=",
                    "4.64.0"
                ]
            ]
        },
        {
            "name": "filterpy",
            "specs": [
                [
                    ">=",
                    "1.4.5"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.1.4"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.11.0"
                ]
            ]
        },
        {
            "name": "psutil",
            "specs": []
        }
    ],
    "lcname": "fdfat"
}
        
Elapsed time: 0.11816s