kernelmind


Namekernelmind JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/zhanj/kernelmind-framework
SummaryA minimalist thinking kernel for LLM agents
upload_time2025-08-03 03:20:39
maintainerNone
docs_urlNone
authorEthan Zhan
requires_python>=3.8
licenseMIT
keywords ai agents llm workflow framework
VCS
bugtrack_url
requirements openai pyyaml numpy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # KernelMind

> The minimalist thinking kernel for building LLM-powered AI agents.

**KernelMind** is a lightweight, flexible framework designed to build agentic LLM systems using a simple yet powerful abstraction: `Point` + `Line`.  
It is ideal for rapidly prototyping workflows, agents, RAG pipelines, and structured thinking systems โ€” all in **under 100 lines of core code**.

---

## โœจ Key Features

- ๐Ÿง  **Agentic-first architecture** โ€“ Built from the ground up for multi-step reasoning
- ๐Ÿ” **Point + Line abstraction** โ€“ Minimal and composable flow control
- โš™๏ธ **Retry / Fallback** โ€“ Built-in error recovery mechanism
- ๐Ÿš€ **Sync & Async support** โ€“ Automatically detects coroutine behavior
- ๐Ÿงช **Testable by design** โ€“ Small units, observable memory store
- ๐ŸŒฟ **Extensible** โ€“ Implement any agent/workflow pattern

---

## ๐Ÿ’ก Core Concepts

| Concept | Description |
|--------|-------------|
| `Point` | A minimal unit of logic (LLM or utility call) |
| `Line`  | A composition of points connected via actions |
| `Memory` | A dictionary-style global store shared across points |
| `load()` / `process()` / `save()` | The 3 lifecycle steps of each Point |

```python
class Point:
    def load(self, memory): ...
    def process(self, item): ...
    def save(self, memory, input, output): ...
```

---

## ๐Ÿ“ฆ Installation

### Option 1: Using uv (Recommended)

[uv](https://github.com/astral-sh/uv) is a fast Python package installer and resolver, written in Rust.

#### 1. Install uv

```bash
# Using pipx (recommended)
pipx install uv

# Or using Homebrew (macOS)
brew install uv

# Or using curl
curl -LsSf https://astral.sh/uv/install.sh | sh
```

#### 2. Create virtual environment and install dependencies

```bash
# Clone the repository
git clone https://github.com/your-org/kernelmind-framework.git
cd kernelmind-framework

# Create virtual environment and install in development mode
uv venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
uv pip install -e .

# Or install specific dependencies
uv add requests
uv add --dev pytest
```

#### 3. Run the example

```bash
python examples/agent_qa.py
```

### Option 2: Using pip (Traditional)

```bash
# Install from PyPI (when published)
pip install kernelmind

# Or install in development mode
git clone https://github.com/your-org/kernelmind-framework.git
cd kernelmind-framework
pip install -e .
```

### Option 3: Manual Setup

```bash
# Create virtual environment
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt
pip install -e .
```

---

## ๐Ÿš€ Quick Example: Q&A Agent

```python
from kernelmind.core import Point, Line

class GetQuestion(Point):
    def load(self, memory):
        return "start"  # Return a non-None value to trigger process()
    
    def process(self, _): 
        user_input = input("Ask: ")
        return user_input
    
    def save(self, memory, _, out): 
        memory["question"] = out; 
        return "default"

class AnswerQuestion(Point):
    def load(self, memory): 
        return memory["question"]
    
    def process(self, q): 
        return f"Answer: {q}"
    
    def save(self, memory, _, out): 
        print("Answer:", out)

ask = GetQuestion()
answer = AnswerQuestion()
ask >> answer
qa_line = Line(entry=ask)
qa_line.run({})
```

---

## ๐Ÿง  Supported Design Patterns

- โœ… Multi-step Workflow
- โœ… Agent with Contextual Actions
- โœ… RAG (Retrieval-Augmented Generation)
- โœ… Map Reduce
- โœ… Structured YAML Output

> See [docs/guide.md](./docs/guide.md) for examples and best practices.

---

## ๐Ÿ“ Project Structure

```
kernelmind/
โ”œโ”€โ”€ core.py          # Core logic: Point + Line
โ”œโ”€โ”€ utils/           # External API wrappers (LLM, search, etc.)
โ”œโ”€โ”€ examples/        # Use cases (Agent, RAG, Workflow)
โ”œโ”€โ”€ tests/           # Unit tests
โ”œโ”€โ”€ docs/guide.md    # Developer documentation
```

---

## ๐Ÿ“– Documentation

Check out the full usage guide and design patterns in:

๐Ÿ“š [`docs/guide.md`](./docs/guide.md)

---

## ๐Ÿงช Run Tests

```bash
# Using uv
uv run pytest tests/

# Using pip
pytest tests/
```

---

## โค๏ธ Philosophy

> From Points to Minds. From Lines to Agents.

KernelMind is not just a framework.  
It is a **philosophy of thinking through structure** โ€” building powerful systems with minimal building blocks.

---

## ๐Ÿ“ฌ Contribution

Pull requests welcome! If you have suggestions, open an issue or start a discussion.

MIT License ยท Built for the AI-native future.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/zhanj/kernelmind-framework",
    "name": "kernelmind",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "ai, agents, llm, workflow, framework",
    "author": "Ethan Zhan",
    "author_email": "Ethan Zhan <jiezhan1@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/25/91/7118f670689e415f4aee05be0ce1f749a336eea7b0581c0bcd58b5f08035/kernelmind-0.1.1.tar.gz",
    "platform": null,
    "description": "# KernelMind\n\n> The minimalist thinking kernel for building LLM-powered AI agents.\n\n**KernelMind** is a lightweight, flexible framework designed to build agentic LLM systems using a simple yet powerful abstraction: `Point` + `Line`.  \nIt is ideal for rapidly prototyping workflows, agents, RAG pipelines, and structured thinking systems \u2014 all in **under 100 lines of core code**.\n\n---\n\n## \u2728 Key Features\n\n- \ud83e\udde0 **Agentic-first architecture** \u2013 Built from the ground up for multi-step reasoning\n- \ud83d\udd01 **Point + Line abstraction** \u2013 Minimal and composable flow control\n- \u2699\ufe0f **Retry / Fallback** \u2013 Built-in error recovery mechanism\n- \ud83d\ude80 **Sync & Async support** \u2013 Automatically detects coroutine behavior\n- \ud83e\uddea **Testable by design** \u2013 Small units, observable memory store\n- \ud83c\udf3f **Extensible** \u2013 Implement any agent/workflow pattern\n\n---\n\n## \ud83d\udca1 Core Concepts\n\n| Concept | Description |\n|--------|-------------|\n| `Point` | A minimal unit of logic (LLM or utility call) |\n| `Line`  | A composition of points connected via actions |\n| `Memory` | A dictionary-style global store shared across points |\n| `load()` / `process()` / `save()` | The 3 lifecycle steps of each Point |\n\n```python\nclass Point:\n    def load(self, memory): ...\n    def process(self, item): ...\n    def save(self, memory, input, output): ...\n```\n\n---\n\n## \ud83d\udce6 Installation\n\n### Option 1: Using uv (Recommended)\n\n[uv](https://github.com/astral-sh/uv) is a fast Python package installer and resolver, written in Rust.\n\n#### 1. Install uv\n\n```bash\n# Using pipx (recommended)\npipx install uv\n\n# Or using Homebrew (macOS)\nbrew install uv\n\n# Or using curl\ncurl -LsSf https://astral.sh/uv/install.sh | sh\n```\n\n#### 2. Create virtual environment and install dependencies\n\n```bash\n# Clone the repository\ngit clone https://github.com/your-org/kernelmind-framework.git\ncd kernelmind-framework\n\n# Create virtual environment and install in development mode\nuv venv\nsource .venv/bin/activate  # On Windows: .venv\\Scripts\\activate\nuv pip install -e .\n\n# Or install specific dependencies\nuv add requests\nuv add --dev pytest\n```\n\n#### 3. Run the example\n\n```bash\npython examples/agent_qa.py\n```\n\n### Option 2: Using pip (Traditional)\n\n```bash\n# Install from PyPI (when published)\npip install kernelmind\n\n# Or install in development mode\ngit clone https://github.com/your-org/kernelmind-framework.git\ncd kernelmind-framework\npip install -e .\n```\n\n### Option 3: Manual Setup\n\n```bash\n# Create virtual environment\npython3 -m venv venv\nsource venv/bin/activate  # On Windows: venv\\Scripts\\activate\n\n# Install dependencies\npip install -r requirements.txt\npip install -e .\n```\n\n---\n\n## \ud83d\ude80 Quick Example: Q&A Agent\n\n```python\nfrom kernelmind.core import Point, Line\n\nclass GetQuestion(Point):\n    def load(self, memory):\n        return \"start\"  # Return a non-None value to trigger process()\n    \n    def process(self, _): \n        user_input = input(\"Ask: \")\n        return user_input\n    \n    def save(self, memory, _, out): \n        memory[\"question\"] = out; \n        return \"default\"\n\nclass AnswerQuestion(Point):\n    def load(self, memory): \n        return memory[\"question\"]\n    \n    def process(self, q): \n        return f\"Answer: {q}\"\n    \n    def save(self, memory, _, out): \n        print(\"Answer:\", out)\n\nask = GetQuestion()\nanswer = AnswerQuestion()\nask >> answer\nqa_line = Line(entry=ask)\nqa_line.run({})\n```\n\n---\n\n## \ud83e\udde0 Supported Design Patterns\n\n- \u2705 Multi-step Workflow\n- \u2705 Agent with Contextual Actions\n- \u2705 RAG (Retrieval-Augmented Generation)\n- \u2705 Map Reduce\n- \u2705 Structured YAML Output\n\n> See [docs/guide.md](./docs/guide.md) for examples and best practices.\n\n---\n\n## \ud83d\udcc1 Project Structure\n\n```\nkernelmind/\n\u251c\u2500\u2500 core.py          # Core logic: Point + Line\n\u251c\u2500\u2500 utils/           # External API wrappers (LLM, search, etc.)\n\u251c\u2500\u2500 examples/        # Use cases (Agent, RAG, Workflow)\n\u251c\u2500\u2500 tests/           # Unit tests\n\u251c\u2500\u2500 docs/guide.md    # Developer documentation\n```\n\n---\n\n## \ud83d\udcd6 Documentation\n\nCheck out the full usage guide and design patterns in:\n\n\ud83d\udcda [`docs/guide.md`](./docs/guide.md)\n\n---\n\n## \ud83e\uddea Run Tests\n\n```bash\n# Using uv\nuv run pytest tests/\n\n# Using pip\npytest tests/\n```\n\n---\n\n## \u2764\ufe0f Philosophy\n\n> From Points to Minds. From Lines to Agents.\n\nKernelMind is not just a framework.  \nIt is a **philosophy of thinking through structure** \u2014 building powerful systems with minimal building blocks.\n\n---\n\n## \ud83d\udcec Contribution\n\nPull requests welcome! If you have suggestions, open an issue or start a discussion.\n\nMIT License \u00b7 Built for the AI-native future.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A minimalist thinking kernel for LLM agents",
    "version": "0.1.1",
    "project_urls": {
        "Documentation": "https://github.com/zhanj/kernelmind-framework#readme",
        "Homepage": "https://github.com/zhanj/kernelmind-framework",
        "Issues": "https://github.com/zhanj/kernelmind-framework/issues",
        "Repository": "https://github.com/zhanj/kernelmind-framework"
    },
    "split_keywords": [
        "ai",
        " agents",
        " llm",
        " workflow",
        " framework"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "07c5ab8a015cc1bee2ca0f7eb55b34df0b867aa756e0efd0bd2bd44ce12fad80",
                "md5": "14b83fd01f3baf42ddd9b29b30eba017",
                "sha256": "2a58e3eefc6c3e0e6e040c0e725ddb763cf88483a8a5fc7ab531a3e1f5cfcd53"
            },
            "downloads": -1,
            "filename": "kernelmind-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "14b83fd01f3baf42ddd9b29b30eba017",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 5414,
            "upload_time": "2025-08-03T03:20:37",
            "upload_time_iso_8601": "2025-08-03T03:20:37.469543Z",
            "url": "https://files.pythonhosted.org/packages/07/c5/ab8a015cc1bee2ca0f7eb55b34df0b867aa756e0efd0bd2bd44ce12fad80/kernelmind-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "25917118f670689e415f4aee05be0ce1f749a336eea7b0581c0bcd58b5f08035",
                "md5": "af892b18623f56944ea985eefda10ed2",
                "sha256": "918d1ea55a642db759049b03326c09644825385ee769e57a0648e6322f241e4f"
            },
            "downloads": -1,
            "filename": "kernelmind-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "af892b18623f56944ea985eefda10ed2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 9009,
            "upload_time": "2025-08-03T03:20:39",
            "upload_time_iso_8601": "2025-08-03T03:20:39.080065Z",
            "url": "https://files.pythonhosted.org/packages/25/91/7118f670689e415f4aee05be0ce1f749a336eea7b0581c0bcd58b5f08035/kernelmind-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-03 03:20:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "zhanj",
    "github_project": "kernelmind-framework",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "openai",
            "specs": []
        },
        {
            "name": "pyyaml",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        }
    ],
    "lcname": "kernelmind"
}
        
Elapsed time: 1.25394s