labml-nn


Namelabml-nn JSON
Version 0.5.1 PyPI version JSON
download
home_pagehttps://github.com/labmlai/annotated_deep_learning_paper_implementations
Summary🧑‍🏫 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit), optimizers (adam, radam, adabelief), gans(dcgan, cyclegan, stylegan2), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, diffusion, etc. 🧠
upload_time2025-08-08 14:31:04
maintainerNone
docs_urlNone
authorVaruna Jayasiri, Nipun Wijerathne
requires_pythonNone
licenseNone
keywords machine learning
VCS
bugtrack_url
requirements torch torchvision torchtext labml labml-helpers numpy matplotlib einops gym opencv-python Pillow faiss
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Twitter](https://img.shields.io/twitter/follow/labmlai?style=social)](https://twitter.com/labmlai)

# [labml.ai Deep Learning Paper Implementations](https://nn.labml.ai/index.html)

This is a collection of simple PyTorch implementations of
neural networks and related algorithms.
These implementations are documented with explanations,

[The website](https://nn.labml.ai/index.html)
renders these as side-by-side formatted notes.
We believe these would help you understand these algorithms better.

![Screenshot](https://nn.labml.ai/dqn-light.png)

We are actively maintaining this repo and adding new 
implementations almost weekly.
[![Twitter](https://img.shields.io/twitter/follow/labmlai?style=social)](https://twitter.com/labmlai) for updates.

## Paper Implementations

#### ✨ [Transformers](https://nn.labml.ai/transformers/index.html)

* [Multi-headed attention](https://nn.labml.ai/transformers/mha.html)
* [Triton Flash Attention](https://nn.labml.ai/transformers/flash/index.html)
* [Transformer building blocks](https://nn.labml.ai/transformers/models.html) 
* [Transformer XL](https://nn.labml.ai/transformers/xl/index.html)
    * [Relative multi-headed attention](https://nn.labml.ai/transformers/xl/relative_mha.html)
* [Rotary Positional Embeddings](https://nn.labml.ai/transformers/rope/index.html)
* [Attention with Linear Biases (ALiBi)](https://nn.labml.ai/transformers/alibi/index.html)
* [RETRO](https://nn.labml.ai/transformers/retro/index.html)
* [Compressive Transformer](https://nn.labml.ai/transformers/compressive/index.html)
* [GPT Architecture](https://nn.labml.ai/transformers/gpt/index.html)
* [GLU Variants](https://nn.labml.ai/transformers/glu_variants/simple.html)
* [kNN-LM: Generalization through Memorization](https://nn.labml.ai/transformers/knn)
* [Feedback Transformer](https://nn.labml.ai/transformers/feedback/index.html)
* [Switch Transformer](https://nn.labml.ai/transformers/switch/index.html)
* [Fast Weights Transformer](https://nn.labml.ai/transformers/fast_weights/index.html)
* [FNet](https://nn.labml.ai/transformers/fnet/index.html)
* [Attention Free Transformer](https://nn.labml.ai/transformers/aft/index.html)
* [Masked Language Model](https://nn.labml.ai/transformers/mlm/index.html)
* [MLP-Mixer: An all-MLP Architecture for Vision](https://nn.labml.ai/transformers/mlp_mixer/index.html)
* [Pay Attention to MLPs (gMLP)](https://nn.labml.ai/transformers/gmlp/index.html)
* [Vision Transformer (ViT)](https://nn.labml.ai/transformers/vit/index.html)
* [Primer EZ](https://nn.labml.ai/transformers/primer_ez/index.html)
* [Hourglass](https://nn.labml.ai/transformers/hour_glass/index.html)

#### ✨ [Low-Rank Adaptation (LoRA)](https://nn.labml.ai/lora/index.html)

#### ✨ [Eleuther GPT-NeoX](https://nn.labml.ai/neox/index.html)
* [Generate on a 48GB GPU](https://nn.labml.ai/neox/samples/generate.html)
* [Finetune on two 48GB GPUs](https://nn.labml.ai/neox/samples/finetune.html)
* [LLM.int8()](https://nn.labml.ai/neox/utils/llm_int8.html)

#### ✨ [Diffusion models](https://nn.labml.ai/diffusion/index.html)

* [Denoising Diffusion Probabilistic Models (DDPM)](https://nn.labml.ai/diffusion/ddpm/index.html)
* [Denoising Diffusion Implicit Models (DDIM)](https://nn.labml.ai/diffusion/stable_diffusion/sampler/ddim.html)
* [Latent Diffusion Models](https://nn.labml.ai/diffusion/stable_diffusion/latent_diffusion.html)
* [Stable Diffusion](https://nn.labml.ai/diffusion/stable_diffusion/index.html)

#### ✨ [Generative Adversarial Networks](https://nn.labml.ai/gan/index.html)
* [Original GAN](https://nn.labml.ai/gan/original/index.html)
* [GAN with deep convolutional network](https://nn.labml.ai/gan/dcgan/index.html)
* [Cycle GAN](https://nn.labml.ai/gan/cycle_gan/index.html)
* [Wasserstein GAN](https://nn.labml.ai/gan/wasserstein/index.html)
* [Wasserstein GAN with Gradient Penalty](https://nn.labml.ai/gan/wasserstein/gradient_penalty/index.html)
* [StyleGAN 2](https://nn.labml.ai/gan/stylegan/index.html)

#### ✨ [Recurrent Highway Networks](https://nn.labml.ai/recurrent_highway_networks/index.html)

#### ✨ [LSTM](https://nn.labml.ai/lstm/index.html)

#### ✨ [HyperNetworks - HyperLSTM](https://nn.labml.ai/hypernetworks/hyper_lstm.html)

#### ✨ [ResNet](https://nn.labml.ai/resnet/index.html)

#### ✨ [ConvMixer](https://nn.labml.ai/conv_mixer/index.html)

#### ✨ [Capsule Networks](https://nn.labml.ai/capsule_networks/index.html)

#### ✨ [U-Net](https://nn.labml.ai/unet/index.html)

#### ✨ [Sketch RNN](https://nn.labml.ai/sketch_rnn/index.html)

#### ✨ Graph Neural Networks

* [Graph Attention Networks (GAT)](https://nn.labml.ai/graphs/gat/index.html)
* [Graph Attention Networks v2 (GATv2)](https://nn.labml.ai/graphs/gatv2/index.html)

#### ✨ [Counterfactual Regret Minimization (CFR)](https://nn.labml.ai/cfr/index.html)

Solving games with incomplete information such as poker with CFR.

* [Kuhn Poker](https://nn.labml.ai/cfr/kuhn/index.html)

#### ✨ [Reinforcement Learning](https://nn.labml.ai/rl/index.html)
* [Proximal Policy Optimization](https://nn.labml.ai/rl/ppo/index.html) with
 [Generalized Advantage Estimation](https://nn.labml.ai/rl/ppo/gae.html)
* [Deep Q Networks](https://nn.labml.ai/rl/dqn/index.html) with
 with [Dueling Network](https://nn.labml.ai/rl/dqn/model.html),
 [Prioritized Replay](https://nn.labml.ai/rl/dqn/replay_buffer.html)
 and Double Q Network.

#### ✨ [Optimizers](https://nn.labml.ai/optimizers/index.html)
* [Adam](https://nn.labml.ai/optimizers/adam.html)
* [AMSGrad](https://nn.labml.ai/optimizers/amsgrad.html)
* [Adam Optimizer with warmup](https://nn.labml.ai/optimizers/adam_warmup.html)
* [Noam Optimizer](https://nn.labml.ai/optimizers/noam.html)
* [Rectified Adam Optimizer](https://nn.labml.ai/optimizers/radam.html)
* [AdaBelief Optimizer](https://nn.labml.ai/optimizers/ada_belief.html)
* [Sophia-G Optimizer](https://nn.labml.ai/optimizers/sophia.html)

#### ✨ [Normalization Layers](https://nn.labml.ai/normalization/index.html)
* [Batch Normalization](https://nn.labml.ai/normalization/batch_norm/index.html)
* [Layer Normalization](https://nn.labml.ai/normalization/layer_norm/index.html)
* [Instance Normalization](https://nn.labml.ai/normalization/instance_norm/index.html)
* [Group Normalization](https://nn.labml.ai/normalization/group_norm/index.html)
* [Weight Standardization](https://nn.labml.ai/normalization/weight_standardization/index.html)
* [Batch-Channel Normalization](https://nn.labml.ai/normalization/batch_channel_norm/index.html)
* [DeepNorm](https://nn.labml.ai/normalization/deep_norm/index.html)

#### ✨ [Distillation](https://nn.labml.ai/distillation/index.html)

#### ✨ [Adaptive Computation](https://nn.labml.ai/adaptive_computation/index.html)

* [PonderNet](https://nn.labml.ai/adaptive_computation/ponder_net/index.html)

#### ✨ [Uncertainty](https://nn.labml.ai/uncertainty/index.html)

* [Evidential Deep Learning to Quantify Classification Uncertainty](https://nn.labml.ai/uncertainty/evidence/index.html)

#### ✨ [Activations](https://nn.labml.ai/activations/index.html)

* [Fuzzy Tiling Activations](https://nn.labml.ai/activations/fta/index.html)

#### ✨ [Langauge Model Sampling Techniques](https://nn.labml.ai/sampling/index.html)
* [Greedy Sampling](https://nn.labml.ai/sampling/greedy.html)
* [Temperature Sampling](https://nn.labml.ai/sampling/temperature.html)
* [Top-k Sampling](https://nn.labml.ai/sampling/top_k.html)
* [Nucleus Sampling](https://nn.labml.ai/sampling/nucleus.html)

#### ✨ [Scalable Training/Inference](https://nn.labml.ai/scaling/index.html)
* [Zero3 memory optimizations](https://nn.labml.ai/scaling/zero3/index.html)

### Installation

```bash
pip install labml-nn
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/labmlai/annotated_deep_learning_paper_implementations",
    "name": "labml-nn",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "machine learning",
    "author": "Varuna Jayasiri, Nipun Wijerathne",
    "author_email": "vpjayasiri@gmail.com, hnipun@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/07/e6/4f9eeb84fb5a37d5efa7ae637e337f12e3e59acf3359ea2d0985dc874740/labml_nn-0.5.1.tar.gz",
    "platform": null,
    "description": "[![Twitter](https://img.shields.io/twitter/follow/labmlai?style=social)](https://twitter.com/labmlai)\n\n# [labml.ai Deep Learning Paper Implementations](https://nn.labml.ai/index.html)\n\nThis is a collection of simple PyTorch implementations of\nneural networks and related algorithms.\nThese implementations are documented with explanations,\n\n[The website](https://nn.labml.ai/index.html)\nrenders these as side-by-side formatted notes.\nWe believe these would help you understand these algorithms better.\n\n![Screenshot](https://nn.labml.ai/dqn-light.png)\n\nWe are actively maintaining this repo and adding new \nimplementations almost weekly.\n[![Twitter](https://img.shields.io/twitter/follow/labmlai?style=social)](https://twitter.com/labmlai) for updates.\n\n## Paper Implementations\n\n#### \u2728 [Transformers](https://nn.labml.ai/transformers/index.html)\n\n* [Multi-headed attention](https://nn.labml.ai/transformers/mha.html)\n* [Triton Flash Attention](https://nn.labml.ai/transformers/flash/index.html)\n* [Transformer building blocks](https://nn.labml.ai/transformers/models.html) \n* [Transformer XL](https://nn.labml.ai/transformers/xl/index.html)\n    * [Relative multi-headed attention](https://nn.labml.ai/transformers/xl/relative_mha.html)\n* [Rotary Positional Embeddings](https://nn.labml.ai/transformers/rope/index.html)\n* [Attention with Linear Biases (ALiBi)](https://nn.labml.ai/transformers/alibi/index.html)\n* [RETRO](https://nn.labml.ai/transformers/retro/index.html)\n* [Compressive Transformer](https://nn.labml.ai/transformers/compressive/index.html)\n* [GPT Architecture](https://nn.labml.ai/transformers/gpt/index.html)\n* [GLU Variants](https://nn.labml.ai/transformers/glu_variants/simple.html)\n* [kNN-LM: Generalization through Memorization](https://nn.labml.ai/transformers/knn)\n* [Feedback Transformer](https://nn.labml.ai/transformers/feedback/index.html)\n* [Switch Transformer](https://nn.labml.ai/transformers/switch/index.html)\n* [Fast Weights Transformer](https://nn.labml.ai/transformers/fast_weights/index.html)\n* [FNet](https://nn.labml.ai/transformers/fnet/index.html)\n* [Attention Free Transformer](https://nn.labml.ai/transformers/aft/index.html)\n* [Masked Language Model](https://nn.labml.ai/transformers/mlm/index.html)\n* [MLP-Mixer: An all-MLP Architecture for Vision](https://nn.labml.ai/transformers/mlp_mixer/index.html)\n* [Pay Attention to MLPs (gMLP)](https://nn.labml.ai/transformers/gmlp/index.html)\n* [Vision Transformer (ViT)](https://nn.labml.ai/transformers/vit/index.html)\n* [Primer EZ](https://nn.labml.ai/transformers/primer_ez/index.html)\n* [Hourglass](https://nn.labml.ai/transformers/hour_glass/index.html)\n\n#### \u2728 [Low-Rank Adaptation (LoRA)](https://nn.labml.ai/lora/index.html)\n\n#### \u2728 [Eleuther GPT-NeoX](https://nn.labml.ai/neox/index.html)\n* [Generate on a 48GB GPU](https://nn.labml.ai/neox/samples/generate.html)\n* [Finetune on two 48GB GPUs](https://nn.labml.ai/neox/samples/finetune.html)\n* [LLM.int8()](https://nn.labml.ai/neox/utils/llm_int8.html)\n\n#### \u2728 [Diffusion models](https://nn.labml.ai/diffusion/index.html)\n\n* [Denoising Diffusion Probabilistic Models (DDPM)](https://nn.labml.ai/diffusion/ddpm/index.html)\n* [Denoising Diffusion Implicit Models (DDIM)](https://nn.labml.ai/diffusion/stable_diffusion/sampler/ddim.html)\n* [Latent Diffusion Models](https://nn.labml.ai/diffusion/stable_diffusion/latent_diffusion.html)\n* [Stable Diffusion](https://nn.labml.ai/diffusion/stable_diffusion/index.html)\n\n#### \u2728 [Generative Adversarial Networks](https://nn.labml.ai/gan/index.html)\n* [Original GAN](https://nn.labml.ai/gan/original/index.html)\n* [GAN with deep convolutional network](https://nn.labml.ai/gan/dcgan/index.html)\n* [Cycle GAN](https://nn.labml.ai/gan/cycle_gan/index.html)\n* [Wasserstein GAN](https://nn.labml.ai/gan/wasserstein/index.html)\n* [Wasserstein GAN with Gradient Penalty](https://nn.labml.ai/gan/wasserstein/gradient_penalty/index.html)\n* [StyleGAN 2](https://nn.labml.ai/gan/stylegan/index.html)\n\n#### \u2728 [Recurrent Highway Networks](https://nn.labml.ai/recurrent_highway_networks/index.html)\n\n#### \u2728 [LSTM](https://nn.labml.ai/lstm/index.html)\n\n#### \u2728 [HyperNetworks - HyperLSTM](https://nn.labml.ai/hypernetworks/hyper_lstm.html)\n\n#### \u2728 [ResNet](https://nn.labml.ai/resnet/index.html)\n\n#### \u2728 [ConvMixer](https://nn.labml.ai/conv_mixer/index.html)\n\n#### \u2728 [Capsule Networks](https://nn.labml.ai/capsule_networks/index.html)\n\n#### \u2728 [U-Net](https://nn.labml.ai/unet/index.html)\n\n#### \u2728 [Sketch RNN](https://nn.labml.ai/sketch_rnn/index.html)\n\n#### \u2728 Graph Neural Networks\n\n* [Graph Attention Networks (GAT)](https://nn.labml.ai/graphs/gat/index.html)\n* [Graph Attention Networks v2 (GATv2)](https://nn.labml.ai/graphs/gatv2/index.html)\n\n#### \u2728 [Counterfactual Regret Minimization (CFR)](https://nn.labml.ai/cfr/index.html)\n\nSolving games with incomplete information such as poker with CFR.\n\n* [Kuhn Poker](https://nn.labml.ai/cfr/kuhn/index.html)\n\n#### \u2728 [Reinforcement Learning](https://nn.labml.ai/rl/index.html)\n* [Proximal Policy Optimization](https://nn.labml.ai/rl/ppo/index.html) with\n [Generalized Advantage Estimation](https://nn.labml.ai/rl/ppo/gae.html)\n* [Deep Q Networks](https://nn.labml.ai/rl/dqn/index.html) with\n with [Dueling Network](https://nn.labml.ai/rl/dqn/model.html),\n [Prioritized Replay](https://nn.labml.ai/rl/dqn/replay_buffer.html)\n and Double Q Network.\n\n#### \u2728 [Optimizers](https://nn.labml.ai/optimizers/index.html)\n* [Adam](https://nn.labml.ai/optimizers/adam.html)\n* [AMSGrad](https://nn.labml.ai/optimizers/amsgrad.html)\n* [Adam Optimizer with warmup](https://nn.labml.ai/optimizers/adam_warmup.html)\n* [Noam Optimizer](https://nn.labml.ai/optimizers/noam.html)\n* [Rectified Adam Optimizer](https://nn.labml.ai/optimizers/radam.html)\n* [AdaBelief Optimizer](https://nn.labml.ai/optimizers/ada_belief.html)\n* [Sophia-G Optimizer](https://nn.labml.ai/optimizers/sophia.html)\n\n#### \u2728 [Normalization Layers](https://nn.labml.ai/normalization/index.html)\n* [Batch Normalization](https://nn.labml.ai/normalization/batch_norm/index.html)\n* [Layer Normalization](https://nn.labml.ai/normalization/layer_norm/index.html)\n* [Instance Normalization](https://nn.labml.ai/normalization/instance_norm/index.html)\n* [Group Normalization](https://nn.labml.ai/normalization/group_norm/index.html)\n* [Weight Standardization](https://nn.labml.ai/normalization/weight_standardization/index.html)\n* [Batch-Channel Normalization](https://nn.labml.ai/normalization/batch_channel_norm/index.html)\n* [DeepNorm](https://nn.labml.ai/normalization/deep_norm/index.html)\n\n#### \u2728 [Distillation](https://nn.labml.ai/distillation/index.html)\n\n#### \u2728 [Adaptive Computation](https://nn.labml.ai/adaptive_computation/index.html)\n\n* [PonderNet](https://nn.labml.ai/adaptive_computation/ponder_net/index.html)\n\n#### \u2728 [Uncertainty](https://nn.labml.ai/uncertainty/index.html)\n\n* [Evidential Deep Learning to Quantify Classification Uncertainty](https://nn.labml.ai/uncertainty/evidence/index.html)\n\n#### \u2728 [Activations](https://nn.labml.ai/activations/index.html)\n\n* [Fuzzy Tiling Activations](https://nn.labml.ai/activations/fta/index.html)\n\n#### \u2728 [Langauge Model Sampling Techniques](https://nn.labml.ai/sampling/index.html)\n* [Greedy Sampling](https://nn.labml.ai/sampling/greedy.html)\n* [Temperature Sampling](https://nn.labml.ai/sampling/temperature.html)\n* [Top-k Sampling](https://nn.labml.ai/sampling/top_k.html)\n* [Nucleus Sampling](https://nn.labml.ai/sampling/nucleus.html)\n\n#### \u2728 [Scalable Training/Inference](https://nn.labml.ai/scaling/index.html)\n* [Zero3 memory optimizations](https://nn.labml.ai/scaling/zero3/index.html)\n\n### Installation\n\n```bash\npip install labml-nn\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "\ud83e\uddd1\u200d\ud83c\udfeb Implementations/tutorials of deep learning papers with side-by-side notes \ud83d\udcdd; including transformers (original, xl, switch, feedback, vit), optimizers (adam, radam, adabelief), gans(dcgan, cyclegan, stylegan2), \ud83c\udfae reinforcement learning (ppo, dqn), capsnet, distillation, diffusion, etc. \ud83e\udde0",
    "version": "0.5.1",
    "project_urls": {
        "Documentation": "https://nn.labml.ai",
        "Homepage": "https://github.com/labmlai/annotated_deep_learning_paper_implementations"
    },
    "split_keywords": [
        "machine",
        "learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a1ed058a18295819037c4ae8ad2b273aa287d4afacc324a883e3ed95ae890bfc",
                "md5": "2bda829cd68f4ce337d28b14dc10d528",
                "sha256": "ba6b6d4efb2590636f237aa6204ffe789b3ec484088226248890393e225a5761"
            },
            "downloads": -1,
            "filename": "labml_nn-0.5.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2bda829cd68f4ce337d28b14dc10d528",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 461912,
            "upload_time": "2025-08-08T14:31:01",
            "upload_time_iso_8601": "2025-08-08T14:31:01.970664Z",
            "url": "https://files.pythonhosted.org/packages/a1/ed/058a18295819037c4ae8ad2b273aa287d4afacc324a883e3ed95ae890bfc/labml_nn-0.5.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "07e64f9eeb84fb5a37d5efa7ae637e337f12e3e59acf3359ea2d0985dc874740",
                "md5": "1094f88ebcf219f9e83d0e43765b6ef7",
                "sha256": "14a23a126e3da62ddb38a2a4e3fd082581b42ab4b82f270882e0a6378be1546b"
            },
            "downloads": -1,
            "filename": "labml_nn-0.5.1.tar.gz",
            "has_sig": false,
            "md5_digest": "1094f88ebcf219f9e83d0e43765b6ef7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 334201,
            "upload_time": "2025-08-08T14:31:04",
            "upload_time_iso_8601": "2025-08-08T14:31:04.070959Z",
            "url": "https://files.pythonhosted.org/packages/07/e6/4f9eeb84fb5a37d5efa7ae637e337f12e3e59acf3359ea2d0985dc874740/labml_nn-0.5.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-08 14:31:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "labmlai",
    "github_project": "annotated_deep_learning_paper_implementations",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.10"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    ">=",
                    "0.11"
                ]
            ]
        },
        {
            "name": "torchtext",
            "specs": [
                [
                    ">=",
                    "0.11"
                ]
            ]
        },
        {
            "name": "labml",
            "specs": [
                [
                    ">=",
                    "0.4.147"
                ]
            ]
        },
        {
            "name": "labml-helpers",
            "specs": [
                [
                    ">=",
                    "0.4.84"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.19"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.0.3"
                ]
            ]
        },
        {
            "name": "einops",
            "specs": [
                [
                    ">=",
                    "0.3.0"
                ]
            ]
        },
        {
            "name": "gym",
            "specs": []
        },
        {
            "name": "opencv-python",
            "specs": []
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    ">=",
                    "6.2.1"
                ]
            ]
        },
        {
            "name": "faiss",
            "specs": []
        }
    ],
    "lcname": "labml-nn"
}
        
Elapsed time: 1.36301s