lightning-bagua


Namelightning-bagua JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/Lightning-AI/lightning-Bagua
SummaryDeep Learning Training Acceleration with Bagua and Lightning AI
upload_time2023-03-22 08:07:32
maintainer
docs_urlNone
authorLightning-AI et al.
requires_python>=3.8
licenseApache-2.0
keywords deep learning pytorch ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Lightning ⚡ Bagua

**Deep Learning Training Acceleration with [Bagua](https://tutorials.baguasys.com/) and [Lightning AI](https://lightning.ai)**

[![lightning](https://img.shields.io/badge/-Lightning_2.0+-792ee5?logo=pytorchlightning&logoColor=white)](https://lightning.ai/)
[![PyPI Status](https://badge.fury.io/py/lightning-bagua.svg)](https://badge.fury.io/py/lightning-bagua)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/lightning-bagua)](https://pypi.org/project/lightning-bagua/)
[![PyPI Status](https://pepy.tech/badge/lightning-bagua)](https://pepy.tech/project/lightning-bagua)
[![Deploy Docs](https://github.com/Lightning-AI/lightning-Bagua/actions/workflows/docs-deploy.yml/badge.svg)](https://lightning-ai.github.io/lightning-Bagua/)

[![General checks](https://github.com/Lightning-AI/lightning-bagua/actions/workflows/ci-checks.yml/badge.svg?event=push)](https://github.com/Lightning-AI/lightning-bagua/actions/workflows/ci-checks.yml)
[![Build Status](https://dev.azure.com/Lightning-AI/compatibility/_apis/build/status/Lightning-AI.lightning-Bagua?branchName=main)](https://dev.azure.com/Lightning-AI/compatibility/_build/latest?definitionId=47&branchName=main)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Lightning-AI/lightning-Bagua/main.svg)](https://results.pre-commit.ci/latest/github/Lightning-AI/lightning-Bagua/main)

[Bagua](https://github.com/BaguaSys/bagua) is a deep learning training acceleration framework which supports multiple advanced distributed
training algorithms including:

- [Gradient AllReduce](https://tutorials.baguasys.com/algorithms/gradient-allreduce) for centralized synchronous communication, where gradients are averaged among all workers.
- [Decentralized SGD](https://tutorials.baguasys.com/algorithms/decentralized) for decentralized synchronous communication, where each worker exchanges data with one or a few specific workers.
- [ByteGrad](https://tutorials.baguasys.com/algorithms/bytegrad) and [QAdam](https://tutorials.baguasys.com/algorithms/q-adam) for low precision communication, where data is compressed into low precision  before communication.
- [Asynchronous Model Average](https://tutorials.baguasys.com/algorithms/async-model-average) for asynchronous communication, where workers are not required to be  synchronized in the same iteration in a lock-step style.

By default, Bagua uses *Gradient AllReduce* algorithm, which is also the algorithm implemented in DDP, but Bagua can usually produce a higher training throughput due to its backend written in Rust.

## Installation

```bash
pip install -U lightning-bagua
```

## Usage

Simply set the strategy argument in the Trainer:

```python
from lightning import Trainer

# train on 4 GPUs (using Bagua mode)
trainer = Trainer(strategy="bagua", accelerator="gpu", devices=4)
```

See [Bagua Tutorials](https://tutorials.baguasys.com/) for more details on installation and advanced features.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Lightning-AI/lightning-Bagua",
    "name": "lightning-bagua",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "deep learning,pytorch,AI",
    "author": "Lightning-AI et al.",
    "author_email": "name@lightning.ai",
    "download_url": "https://files.pythonhosted.org/packages/61/c8/232a596b7809ef6f3957c3e7027fa2af848d0b12507374db06bdf1b2d4ef/lightning-bagua-0.1.0.tar.gz",
    "platform": null,
    "description": "# Lightning \u26a1 Bagua\n\n**Deep Learning Training Acceleration with [Bagua](https://tutorials.baguasys.com/) and [Lightning AI](https://lightning.ai)**\n\n[![lightning](https://img.shields.io/badge/-Lightning_2.0+-792ee5?logo=pytorchlightning&logoColor=white)](https://lightning.ai/)\n[![PyPI Status](https://badge.fury.io/py/lightning-bagua.svg)](https://badge.fury.io/py/lightning-bagua)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/lightning-bagua)](https://pypi.org/project/lightning-bagua/)\n[![PyPI Status](https://pepy.tech/badge/lightning-bagua)](https://pepy.tech/project/lightning-bagua)\n[![Deploy Docs](https://github.com/Lightning-AI/lightning-Bagua/actions/workflows/docs-deploy.yml/badge.svg)](https://lightning-ai.github.io/lightning-Bagua/)\n\n[![General checks](https://github.com/Lightning-AI/lightning-bagua/actions/workflows/ci-checks.yml/badge.svg?event=push)](https://github.com/Lightning-AI/lightning-bagua/actions/workflows/ci-checks.yml)\n[![Build Status](https://dev.azure.com/Lightning-AI/compatibility/_apis/build/status/Lightning-AI.lightning-Bagua?branchName=main)](https://dev.azure.com/Lightning-AI/compatibility/_build/latest?definitionId=47&branchName=main)\n[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Lightning-AI/lightning-Bagua/main.svg)](https://results.pre-commit.ci/latest/github/Lightning-AI/lightning-Bagua/main)\n\n[Bagua](https://github.com/BaguaSys/bagua) is a deep learning training acceleration framework which supports multiple advanced distributed\ntraining algorithms including:\n\n- [Gradient AllReduce](https://tutorials.baguasys.com/algorithms/gradient-allreduce) for centralized synchronous communication, where gradients are averaged among all workers.\n- [Decentralized SGD](https://tutorials.baguasys.com/algorithms/decentralized) for decentralized synchronous communication, where each worker exchanges data with one or a few specific workers.\n- [ByteGrad](https://tutorials.baguasys.com/algorithms/bytegrad) and [QAdam](https://tutorials.baguasys.com/algorithms/q-adam) for low precision communication, where data is compressed into low precision  before communication.\n- [Asynchronous Model Average](https://tutorials.baguasys.com/algorithms/async-model-average) for asynchronous communication, where workers are not required to be  synchronized in the same iteration in a lock-step style.\n\nBy default, Bagua uses *Gradient AllReduce* algorithm, which is also the algorithm implemented in DDP, but Bagua can usually produce a higher training throughput due to its backend written in Rust.\n\n## Installation\n\n```bash\npip install -U lightning-bagua\n```\n\n## Usage\n\nSimply set the strategy argument in the Trainer:\n\n```python\nfrom lightning import Trainer\n\n# train on 4 GPUs (using Bagua mode)\ntrainer = Trainer(strategy=\"bagua\", accelerator=\"gpu\", devices=4)\n```\n\nSee [Bagua Tutorials](https://tutorials.baguasys.com/) for more details on installation and advanced features.\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Deep Learning Training Acceleration with Bagua and Lightning AI",
    "version": "0.1.0",
    "split_keywords": [
        "deep learning",
        "pytorch",
        "ai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6f4a33799300a1fa158e4545a6639325b91a26ddef5d336fa514089915905fd9",
                "md5": "627d8f8496791b2f517f3adf8c361920",
                "sha256": "8cb1e0156be950c1859061c9586d606f9543c96c5e0bb8dd128c7075a4233295"
            },
            "downloads": -1,
            "filename": "lightning_bagua-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "627d8f8496791b2f517f3adf8c361920",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 13018,
            "upload_time": "2023-03-22T08:07:31",
            "upload_time_iso_8601": "2023-03-22T08:07:31.311197Z",
            "url": "https://files.pythonhosted.org/packages/6f/4a/33799300a1fa158e4545a6639325b91a26ddef5d336fa514089915905fd9/lightning_bagua-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "61c8232a596b7809ef6f3957c3e7027fa2af848d0b12507374db06bdf1b2d4ef",
                "md5": "0408d97afcf28643e2bc0d41124d9d92",
                "sha256": "3ca4f1659816b6d62cc604081fa0b4210a0b80de45cc604c9bdcb2c906cb4d4c"
            },
            "downloads": -1,
            "filename": "lightning-bagua-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "0408d97afcf28643e2bc0d41124d9d92",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 14371,
            "upload_time": "2023-03-22T08:07:32",
            "upload_time_iso_8601": "2023-03-22T08:07:32.979457Z",
            "url": "https://files.pythonhosted.org/packages/61/c8/232a596b7809ef6f3957c3e7027fa2af848d0b12507374db06bdf1b2d4ef/lightning-bagua-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-22 08:07:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "Lightning-AI",
    "github_project": "lightning-Bagua",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "lightning-bagua"
}
        
Elapsed time: 0.06313s