lightning-bolts


Namelightning-bolts JSON
Version 0.6.0.post1 PyPI version JSON
download
home_pagehttps://github.com/Lightning-AI/lightning-bolts
SummaryLightning Bolts is a community contribution for ML researchers.
upload_time2022-11-08 15:53:31
maintainer
docs_urlNone
authorLightning AI et al.
requires_python>=3.7
licenseApache-2.0
keywords deep learning pytorch ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">

<img src="https://github.com/Lightning-AI/lightning-bolts/raw/0.6.0.post1/docs/source/_images/logos/bolts_logo.png" width="400px">

**Deep Learning components for extending PyTorch Lightning**

______________________________________________________________________

<p align="center">
  <a href="#install">Installation</a> •
  <a href="https://lightning-bolts.readthedocs.io/en/latest/">Latest Docs</a> •
  <a href="https://lightning-bolts.readthedocs.io/en/0.6.0.post1">Stable Docs</a> •
  <a href="#what-is-bolts">About</a> •
  <a href="#team">Community</a> •
  <a href="https://www.pytorchlightning.ai/">Website</a> •
  <a href="https://www.grid.ai/">Grid AI</a> •
  <a href="#license">License</a>
</p>

[![PyPI Status](https://badge.fury.io/py/lightning-bolts.svg)](https://badge.fury.io/py/lightning-bolts)
[![PyPI Status](https://pepy.tech/badge/lightning-bolts)](https://pepy.tech/project/lightning-bolts)
[![Build Status](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_apis/build/status/Lightning-AI.lightning-bolts?branchName=master)](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_build?definitionId=31&_a=summary&repositoryFilter=13&branchFilter=4923%2C4923)
[![codecov](https://codecov.io/gh/Lightning-AI/lightning-bolts/release/0.6.0.post1/graph/badge.svg?token=O8p0qhvj90)](https://codecov.io/gh/Lightning-AI/lightning-bolts)

[![Documentation Status](https://readthedocs.org/projects/lightning-bolts/badge/?version=latest)](https://lightning-bolts.readthedocs.io/en/latest/)
[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://www.pytorchlightning.ai/community)
[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/lightning-bolts/blob/master/LICENSE)

</div>

______________________________________________________________________

## Getting Started

Pip / Conda

```bash
pip install lightning-bolts
```

<details>
  <summary>Other installations</summary>

Install bleeding-edge (no guarantees)

```bash
pip install git+https://github.com/PytorchLightning/lightning-bolts.git@master --upgrade
```

To install all optional dependencies

```bash
pip install lightning-bolts["extra"]
```

</details>

## What is Bolts

Bolts provides a variety of components to extend PyTorch Lightning such as callbacks & datasets, for applied research and production.

## News

- Sept 22: [Leverage Sparsity for Faster Inference with Lightning Flash and SparseML](https://devblog.pytorchlightning.ai/leverage-sparsity-for-faster-inference-with-lightning-flash-and-sparseml-cdda1165622b)
- Aug 26: [Fine-tune Transformers Faster with Lightning Flash and Torch ORT](https://devblog.pytorchlightning.ai/fine-tune-transformers-faster-with-lightning-flash-and-torch-ort-ec2d53789dc3)

#### Example 1: Accelerate Lightning Training with the Torch ORT Callback

Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the [documentation](https://lightning-bolts.readthedocs.io/en/latest/callbacks/torch_ort.html) for more details.

```python
from pytorch_lightning import LightningModule, Trainer
import torchvision.models as models
from pl_bolts.callbacks import ORTCallback


class VisionModel(LightningModule):
    def __init__(self):
        super().__init__()
        self.model = models.vgg19_bn(pretrained=True)

    ...


model = VisionModel()
trainer = Trainer(gpus=1, callbacks=ORTCallback())
trainer.fit(model)
```

#### Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference

We can introduce sparsity during fine-tuning with [SparseML](https://github.com/neuralmagic/sparseml), which ultimately allows us to leverage the [DeepSparse](https://github.com/neuralmagic/deepsparse) engine to see performance improvements at inference time.

```python
from pytorch_lightning import LightningModule, Trainer
import torchvision.models as models
from pl_bolts.callbacks import SparseMLCallback


class VisionModel(LightningModule):
    def __init__(self):
        super().__init__()
        self.model = models.vgg19_bn(pretrained=True)

    ...


model = VisionModel()
trainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path="recipe.yaml"))
trainer.fit(model)
```

## Are specific research implementations supported?

We'd like to encourage users to contribute general components that will help a broad range of problems, however components that help specifics domains will also be welcomed!

For example a callback to help train SSL models would be a great contribution, however the next greatest SSL model from your latest paper would be a good contribution to [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash).

Use [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash) to train, predict and serve state-of-the-art models for applied research. We suggest looking at our [VISSL](https://lightning-flash.readthedocs.io/en/latest/integrations/vissl.html) Flash integration for SSL based tasks.

## Contribute!

Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community!

Join our Slack and/or read our [CONTRIBUTING](./.github/CONTRIBUTING.md) guidelines to get help becoming a contributor!

______________________________________________________________________

## License

Please observe the Apache 2.0 license that is listed in this repository.
In addition the Lightning framework is Patent Pending.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Lightning-AI/lightning-bolts",
    "name": "lightning-bolts",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "deep learning,pytorch,AI",
    "author": "Lightning AI et al.",
    "author_email": "pytorch@lightning.ai",
    "download_url": "https://files.pythonhosted.org/packages/f0/23/0e5e5b5cfc2202f56b48353dc52dc91d3c4b85b09cb6439d996481491d45/lightning-bolts-0.6.0.post1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n\n<img src=\"https://github.com/Lightning-AI/lightning-bolts/raw/0.6.0.post1/docs/source/_images/logos/bolts_logo.png\" width=\"400px\">\n\n**Deep Learning components for extending PyTorch Lightning**\n\n______________________________________________________________________\n\n<p align=\"center\">\n  <a href=\"#install\">Installation</a> \u2022\n  <a href=\"https://lightning-bolts.readthedocs.io/en/latest/\">Latest Docs</a> \u2022\n  <a href=\"https://lightning-bolts.readthedocs.io/en/0.6.0.post1\">Stable Docs</a> \u2022\n  <a href=\"#what-is-bolts\">About</a> \u2022\n  <a href=\"#team\">Community</a> \u2022\n  <a href=\"https://www.pytorchlightning.ai/\">Website</a> \u2022\n  <a href=\"https://www.grid.ai/\">Grid AI</a> \u2022\n  <a href=\"#license\">License</a>\n</p>\n\n[![PyPI Status](https://badge.fury.io/py/lightning-bolts.svg)](https://badge.fury.io/py/lightning-bolts)\n[![PyPI Status](https://pepy.tech/badge/lightning-bolts)](https://pepy.tech/project/lightning-bolts)\n[![Build Status](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_apis/build/status/Lightning-AI.lightning-bolts?branchName=master)](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_build?definitionId=31&_a=summary&repositoryFilter=13&branchFilter=4923%2C4923)\n[![codecov](https://codecov.io/gh/Lightning-AI/lightning-bolts/release/0.6.0.post1/graph/badge.svg?token=O8p0qhvj90)](https://codecov.io/gh/Lightning-AI/lightning-bolts)\n\n[![Documentation Status](https://readthedocs.org/projects/lightning-bolts/badge/?version=latest)](https://lightning-bolts.readthedocs.io/en/latest/)\n[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://www.pytorchlightning.ai/community)\n[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/lightning-bolts/blob/master/LICENSE)\n\n</div>\n\n______________________________________________________________________\n\n## Getting Started\n\nPip / Conda\n\n```bash\npip install lightning-bolts\n```\n\n<details>\n  <summary>Other installations</summary>\n\nInstall bleeding-edge (no guarantees)\n\n```bash\npip install git+https://github.com/PytorchLightning/lightning-bolts.git@master --upgrade\n```\n\nTo install all optional dependencies\n\n```bash\npip install lightning-bolts[\"extra\"]\n```\n\n</details>\n\n## What is Bolts\n\nBolts provides a variety of components to extend PyTorch Lightning such as callbacks & datasets, for applied research and production.\n\n## News\n\n- Sept 22: [Leverage Sparsity for Faster Inference with Lightning Flash and SparseML](https://devblog.pytorchlightning.ai/leverage-sparsity-for-faster-inference-with-lightning-flash-and-sparseml-cdda1165622b)\n- Aug 26: [Fine-tune Transformers Faster with Lightning Flash and Torch ORT](https://devblog.pytorchlightning.ai/fine-tune-transformers-faster-with-lightning-flash-and-torch-ort-ec2d53789dc3)\n\n#### Example 1: Accelerate Lightning Training with the Torch ORT Callback\n\nTorch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the [documentation](https://lightning-bolts.readthedocs.io/en/latest/callbacks/torch_ort.html) for more details.\n\n```python\nfrom pytorch_lightning import LightningModule, Trainer\nimport torchvision.models as models\nfrom pl_bolts.callbacks import ORTCallback\n\n\nclass VisionModel(LightningModule):\n    def __init__(self):\n        super().__init__()\n        self.model = models.vgg19_bn(pretrained=True)\n\n    ...\n\n\nmodel = VisionModel()\ntrainer = Trainer(gpus=1, callbacks=ORTCallback())\ntrainer.fit(model)\n```\n\n#### Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference\n\nWe can introduce sparsity during fine-tuning with [SparseML](https://github.com/neuralmagic/sparseml), which ultimately allows us to leverage the [DeepSparse](https://github.com/neuralmagic/deepsparse) engine to see performance improvements at inference time.\n\n```python\nfrom pytorch_lightning import LightningModule, Trainer\nimport torchvision.models as models\nfrom pl_bolts.callbacks import SparseMLCallback\n\n\nclass VisionModel(LightningModule):\n    def __init__(self):\n        super().__init__()\n        self.model = models.vgg19_bn(pretrained=True)\n\n    ...\n\n\nmodel = VisionModel()\ntrainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path=\"recipe.yaml\"))\ntrainer.fit(model)\n```\n\n## Are specific research implementations supported?\n\nWe'd like to encourage users to contribute general components that will help a broad range of problems, however components that help specifics domains will also be welcomed!\n\nFor example a callback to help train SSL models would be a great contribution, however the next greatest SSL model from your latest paper would be a good contribution to [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash).\n\nUse [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash) to train, predict and serve state-of-the-art models for applied research. We suggest looking at our [VISSL](https://lightning-flash.readthedocs.io/en/latest/integrations/vissl.html) Flash integration for SSL based tasks.\n\n## Contribute!\n\nBolts is supported by the PyTorch Lightning team and the PyTorch Lightning community!\n\nJoin our Slack and/or read our [CONTRIBUTING](./.github/CONTRIBUTING.md) guidelines to get help becoming a contributor!\n\n______________________________________________________________________\n\n## License\n\nPlease observe the Apache 2.0 license that is listed in this repository.\nIn addition the Lightning framework is Patent Pending.\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Lightning Bolts is a community contribution for ML researchers.",
    "version": "0.6.0.post1",
    "project_urls": {
        "Bug Tracker": "https://github.com/PyTorchLightning/lightning-bolts/issues",
        "Documentation": "https://lightning-bolts.rtfd.io/en/latest/",
        "Download": "https://github.com/PyTorchLightning/lightning-bolts",
        "Homepage": "https://github.com/Lightning-AI/lightning-bolts",
        "Source Code": "https://github.com/PyTorchLightning/lightning-bolts"
    },
    "split_keywords": [
        "deep learning",
        "pytorch",
        "ai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b773b992893803a7d7ec8afe465f98d5b2808de22da11f3770d6094e08393aee",
                "md5": "e0da51bfa1cac0d03dec5b322a3a63fd",
                "sha256": "a93496d9cdd57a48dcd2a88fffe71bb7ec1f46a43e1d29d6cd852a29663d8a49"
            },
            "downloads": -1,
            "filename": "lightning_bolts-0.6.0.post1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e0da51bfa1cac0d03dec5b322a3a63fd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 329994,
            "upload_time": "2022-11-08T15:53:29",
            "upload_time_iso_8601": "2022-11-08T15:53:29.347420Z",
            "url": "https://files.pythonhosted.org/packages/b7/73/b992893803a7d7ec8afe465f98d5b2808de22da11f3770d6094e08393aee/lightning_bolts-0.6.0.post1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f0230e5e5b5cfc2202f56b48353dc52dc91d3c4b85b09cb6439d996481491d45",
                "md5": "b212e718c27c63567f2bb0ee644b5f1d",
                "sha256": "09330e0998c94922b2a1471b9175b2e2a4c2d42e3c4a4de07677369b4d41bc08"
            },
            "downloads": -1,
            "filename": "lightning-bolts-0.6.0.post1.tar.gz",
            "has_sig": false,
            "md5_digest": "b212e718c27c63567f2bb0ee644b5f1d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 190482,
            "upload_time": "2022-11-08T15:53:31",
            "upload_time_iso_8601": "2022-11-08T15:53:31.046923Z",
            "url": "https://files.pythonhosted.org/packages/f0/23/0e5e5b5cfc2202f56b48353dc52dc91d3c4b85b09cb6439d996481491d45/lightning-bolts-0.6.0.post1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-11-08 15:53:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Lightning-AI",
    "github_project": "lightning-bolts",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "lightning-bolts"
}
        
Elapsed time: 1.28103s