lightning-data


Namelightning-data JSON
Version 0.2.0.dev0 PyPI version JSON
download
home_pagehttps://github.com/Lightning-AI/lit-data
SummaryThe Deep Learning framework to train, deploy, and ship AI products Lightning fast.
upload_time2024-02-19 12:36:40
maintainer
docs_urlNone
authorLightning AI et al.
requires_python>=3.8
licenseApache-2.0
keywords deep learning pytorch ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">

<img alt="Lightning" src="https://pl-flash-data.s3.amazonaws.com/lightning_data_logo.png" width="800px" style="max-width: 100%;">

<br/>
<br/>

## Blazing fast, distributed streaming of training data from cloud storage

</div>

# ⚑ Welcome to Lightning Data

We developed `StreamingDataset` to optimize training of large datasets stored on the cloud while prioritizing speed, affordability, and scalability.

Specifically crafted for multi-node, distributed training with large models, it enhances accuracy, performance, and user-friendliness. Now, training efficiently is possible regardless of the data's location. Simply stream in the required data when needed.

The `StreamingDataset` is compatible with any data type, including **images, text, video, and multimodal data** and it is a drop-in replacement for your PyTorch [IterableDataset](https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset) class. For example, it is used by [Lit-GPT](https://github.com/Lightning-AI/lit-gpt/blob/main/pretrain/tinyllama.py) to pretrain LLMs.

Finally, the `StreamingDataset` is fast! Check out our [benchmark](https://lightning.ai/lightning-ai/studios/benchmark-cloud-data-loading-libraries).

Here is an illustration showing how the `StreamingDataset` works.

![An illustration showing how the Streaming Dataset works.](https://pl-flash-data.s3.amazonaws.com/streaming_dataset.gif)

# 🎬 Getting Started

## πŸ’Ύ Installation

Lightning Data can be installed with `pip`:

<!--pytest.mark.skip-->

```bash
pip install --no-cache-dir git+https://github.com/Lightning-AI/lit-data.git@master
```

## 🏁 Quick Start

### 1. Prepare Your Data

Convert your raw dataset into Lightning Streaming format using the `optimize` operator. More formats are coming...

<!--pytest.mark.skip-->

```python
import numpy as np
from lightning_data import optimize
from PIL import Image


# Store random images into the chunks
def random_images(index):
    data = {
        "index": index,
        "image": Image.fromarray(np.random.randint(0, 256, (32, 32, 3), np.uint8)),
        "class": np.random.randint(10),
    }
    return data # The data is serialized into bytes and stored into chunks by the optimize operator.

if __name__ == "__main__":
    optimize(
        fn=random_images,  # The function applied over each input.
        inputs=list(range(1000)),  # Provide any inputs. The fn is applied on each item.
        output_dir="my_dataset",  # The directory where the optimized data are stored.
        num_workers=4,  # The number of workers. The inputs are distributed among them.
        chunk_bytes="64MB"  # The maximum number of bytes to write into a chunk.
    )

```

The `optimize` operator supports any data structures and types. Serialize whatever you want.

### 2. Upload Your Data to Cloud Storage

Cloud providers such as [AWS](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html), [Google Cloud](https://cloud.google.com/storage/docs/uploading-objects?hl=en#upload-object-cli), [Azure](https://learn.microsoft.com/en-us/azure/import-export/storage-import-export-data-to-files?tabs=azure-portal-preview), etc.. provide command line client to upload your data to their storage.

Here is an example with [AWS S3](https://aws.amazon.com/s3).

```bash
⚑ aws s3 cp --recursive my_dataset s3://my-bucket/my_dataset
```

### 3. Use StreamingDataset and DataLoader

```python
from lightning_data import StreamingDataset
from torch.utils.data import DataLoader

# Remote path where full dataset is persistently stored
input_dir = 's3://pl-flash-data/my_dataset'

# Create streaming dataset
dataset = StreamingDataset(input_dir, shuffle=True)

# Check any elements
sample = dataset[50]
img = sample['image']
cls = sample['class']

# Create PyTorch DataLoader
dataloader = DataLoader(dataset)
```

## Transform data

Similar to `optimize`, the `map` operator can be used to transform data by applying a function over a list of item and persist all the files written inside the output directory.

### 1. Put some images on a cloud storage

We generates 1000 images and upload them to AWS S3.

```python
import os
from PIL import Image
import numpy as np

data_dir = "my_images"
os.makedirs(data_dir, exist_ok=True)

for i in range(1000):
    width = np.random.randint(224, 320) 
    height = np.random.randint(224, 320) 
    image_path = os.path.join(data_dir, f"{i}.JPEG")
    Image.fromarray(
        np.random.randint(0, 256, (width, height, 3), np.uint8)
    ).save(image_path, format="JPEG", quality=90)
```

```bash
⚑ aws s3 cp --recursive my_images s3://my-bucket/my_images
```

### 2. Resize the images

```python
import os
from lightning_data import map
from PIL import Image

input_dir = "s3://my-bucket/my_images"
inputs = [os.path.join(input_dir, f) for f in os.listdir(input_dir)]

def resize_image(image_path, output_dir):
  output_image_path = os.path.join(output_dir, os.path.basename(image_path))
  Image.open(image_path).resize((224, 224)).save(output_image_path)
  
if __name__ == "__main__":
    map(
        fn=resize_image,
        inputs=inputs, 
        output_dir="s3://my-bucket/my_resized_images",
        num_workers=4,
    )
```

# πŸ“š End-to-end Lightning Studio Templates

We have end-to-end free [Studios](https://lightning.ai) showing all the steps to prepare the following datasets:

| Dataset                                                                                                                                      |      Data type      |                                                                                                                                  Studio |
| -------------------------------------------------------------------------------------------------------------------------------------------- | :-----------------: | --------------------------------------------------------------------------------------------------------------------------------------: |
| [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/)                                                                                  | Image & description |            [Use or explore LAION-400MILLION dataset](https://lightning.ai/lightning-ai/studios/use-or-explore-laion-400million-dataset) |
| [Chesapeake Roads Spatial Context](https://github.com/isaaccorley/chesapeakersc)                                                             |    Image & Mask     | [Convert GeoSpatial data to Lightning Streaming](https://lightning.ai/lightning-ai/studios/convert-spatial-data-to-lightning-streaming) |
| [Imagenet 1M](https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=171)                                               |    Image & Label    |              [Benchmark cloud data-loading libraries](https://lightning.ai/lightning-ai/studios/benchmark-cloud-data-loading-libraries) |
| [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B) & [StartCoder](https://huggingface.co/datasets/bigcode/starcoderdata) |        Text         |              [Prepare the TinyLlama 1T token dataset](https://lightning.ai/lightning-ai/studios/prepare-the-tinyllama-1t-token-dataset) |
| [English Wikepedia](https://huggingface.co/datasets/wikipedia)                                                                               |        Text         |            [Embed English Wikipedia under 5 dollars](https://lightning.ai/lightning-ai/studios/embed-english-wikipedia-under-5-dollars) |
| Generated                                                                                                                                    |    Parquet Files    |            [Convert parquets to Lightning Streaming](https://lightning.ai/lightning-ai/studios/convert-parquets-to-lightning-streaming) |

[Lightning Studios](https://lightning.ai) are fully reproducible cloud IDE with data, code, dependencies, etc... Finally reproducible science.

# πŸ“ˆ Easily scale data processing

To scale data processing, create a free account on [lightning.ai](https://lightning.ai/) platform. With the platform, the `optimize` and `map` can start multiple machines to make data processing drastically faster as follows:

```python
from lightning_data import optimize, Machine

optimize(
  ...
  num_nodes=32,
  machine=Machine.DATA_PREP, # You can select between dozens of optimized machines
)
```

OR

```python
from lightning_data import map, Machine

map(
  ...
  num_nodes=32,
  machine=Machine.DATA_PREP, # You can select between dozens of optimized machines
)
```

<div align="center">

<img alt="Lightning" src="https://pl-flash-data.s3.amazonaws.com/data-prep.jpg" width="800px" style="max-width: 100%;">

<br/>

The Data Prep Job UI from the [LAION 400M Studio](https://lightning.ai/lightning-ai/studios/use-or-explore-laion-400million-dataset) where we used 32 machines with 32 CPU each to download 400 million images in only 2 hours.

</div>

# πŸ”‘ Key Features

## πŸš€ Multi-GPU / Multi-Node

The `StreamingDataset` and `StreamingDataLoader` takes care of everything for you. They automatically make sure each rank receives different batch of data. There is nothing for you to do if you use them.

## 🎨 Easy data mixing

You can easily experiment with dataset mixtures using the CombinedStreamingDataset.

```python
from lightning_data import StreamingDataset, CombinedStreamingDataset
from lightning_data.streaming.item_loader import TokensLoader
from tqdm import tqdm
import os
from torch.utils.data import DataLoader

train_datasets = [
    StreamingDataset(
        input_dir="s3://tinyllama-template/slimpajama/train/",
        item_loader=TokensLoader(block_size=2048 + 1), # Optimized loader for tokens used by LLMs 
        shuffle=True,
        drop_last=True,
    ),
    StreamingDataset(
        input_dir="s3://tinyllama-template/starcoder/",
        item_loader=TokensLoader(block_size=2048 + 1), # Optimized loader for tokens used by LLMs 
        shuffle=True,
        drop_last=True,
    ),
]

# Mix SlimPajama data and Starcoder data with these proportions:
weights = (0.693584, 0.306416)
combined_dataset = CombinedStreamingDataset(datasets=train_datasets, seed=42, weights=weights)

train_dataloader = DataLoader(combined_dataset, batch_size=8, pin_memory=True, num_workers=os.cpu_count())

# Iterate over the combined datasets
for batch in tqdm(train_dataloader):
    pass
```

## πŸ”˜ Stateful StreamingDataLoader

Lightning Data provides a stateful `StreamingDataLoader`. This simplifies resuming training over large datasets.

Note: The `StreamingDataLoader` is used by [Lit-GPT](https://github.com/Lightning-AI/lit-gpt/blob/main/pretrain/tinyllama.py) to pretrain LLMs. The statefulness still works when using a mixture of datasets with the `CombinedStreamingDataset`.

```python
import os
import torch
from lightning_data import StreamingDataset, StreamingDataLoader

dataset = StreamingDataset("s3://my-bucket/my-data", shuffle=True)
dataloader = StreamingDataLoader(dataset, num_workers=os.cpu_count(), batch_size=64)

#Β Restore the dataLoader state if it exists
if os.path.isfile("dataloader_state.pt"):
    state_dict = torch.load("dataloader_state.pt")
    dataloader.load_state_dict(state_dict)

# Iterate over the data
for batch_idx, batch in enumerate(dataloader):
  
    # Store the state every 1000 batches
    if batch_idx % 1000 == 0:
        torch.save(dataloader.state_dict(), "dataloader_state.pt")
```

## πŸŽ₯ Profiling

The `StreamingDataLoader` supports profiling your data loading. Simply use the `profile_batches` argument as follows:

```python
from lightning_data import StreamingDataset, StreamingDataLoader

StreamingDataLoader(..., profile_batches=5)
```

This generates a Chrome trace called `result.json`. You can visualize this trace by opening Chrome browser at the `chrome://tracing` URL and load the trace inside.

## πŸͺ‡ Random access

Access the data you need when you need it.

```python
from lightning_data import StreamingDataset

dataset = StreamingDataset(...)

print(len(dataset)) # display the length of your data

print(dataset[42]) # show the 42th element of the dataset
```

## ✒ Use data transforms

```python
from lightning_data import StreamingDataset, StreamingDataLoader
import torchvision.transforms.v2.functional as F

class ImagenetStreamingDataset(StreamingDataset):

    def __getitem__(self, index):
        image = super().__getitem__(index)
        return F.resize(image, (224, 224))

dataset = ImagenetStreamingDataset(...)
dataloader = StreamingDataLoader(dataset, batch_size=4)

for batch in dataloader:
    print(batch.shape)
    # Out: (4, 3, 224, 224)
```

## βš™οΈ Disk usage limits

Limit the size of the cache holding the chunks.

```python
from lightning_data import StreamingDataset

dataset = StreamingDataset(..., max_cache_size="10GB")
```

## πŸ’Ύ Support yield

When processing large files like compressed [parquet files](https://en.wikipedia.org/wiki/Apache_Parquet), you can use python yield to process and store one item at the time.

```python
from pathlib import Path
import pyarrow.parquet as pq
from lightning_data import optimize
from tokenizer import Tokenizer
from functools import partial

# 1. Define a function to convert the text within the parquet files into tokens
def tokenize_fn(filepath, tokenizer=None):
    parquet_file = pq.ParquetFile(filepath)
    # Process per batch to reduce RAM usage
    for batch in parquet_file.iter_batches(batch_size=8192, columns=["content"]):
        for text in batch.to_pandas()["content"]:
            yield tokenizer.encode(text, bos=False, eos=True)

# 2. Generate the inputs
input_dir = "/teamspace/s3_connections/tinyllama-template"
inputs = [str(file) for file in Path(f"{input_dir}/starcoderdata").rglob("*.parquet")]

# 3. Store the optimized data wherever you want under "/teamspace/datasets" or "/teamspace/s3_connections"
outputs = optimize(
    fn=partial(tokenize_fn, tokenizer=Tokenizer(f"{input_dir}/checkpoints/Llama-2-7b-hf")), # Note: You can use HF tokenizer or any others
    inputs=inputs,
    output_dir="/teamspace/datasets/starcoderdata",
    chunk_size=(2049 * 8012),
)
```

# ⚑ Contributors

We welcome any contributions, pull requests, or issues. If you use the Streaming Dataset for your own project, please reach out to us on Slack or Discord.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Lightning-AI/lit-data",
    "name": "lightning-data",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "deep learning,pytorch,AI",
    "author": "Lightning AI et al.",
    "author_email": "pytorch@lightning.ai",
    "download_url": "https://files.pythonhosted.org/packages/00/e0/719c16110f48d71a858c1fda5abaf5f56efce618a134fd7de02f18a75bd6/lightning-data-0.2.0.dev0.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n\n<img alt=\"Lightning\" src=\"https://pl-flash-data.s3.amazonaws.com/lightning_data_logo.png\" width=\"800px\" style=\"max-width: 100%;\">\n\n<br/>\n<br/>\n\n## Blazing fast, distributed streaming of training data from cloud storage\n\n</div>\n\n# \u26a1 Welcome to Lightning Data\n\nWe developed `StreamingDataset` to optimize training of large datasets stored on the cloud while prioritizing speed, affordability, and scalability.\n\nSpecifically crafted for multi-node, distributed training with large models, it enhances accuracy, performance, and user-friendliness. Now, training efficiently is possible regardless of the data's location. Simply stream in the required data when needed.\n\nThe `StreamingDataset` is compatible with any data type, including **images, text, video, and multimodal data** and it is a drop-in replacement for your PyTorch [IterableDataset](https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset) class. For example, it is used by [Lit-GPT](https://github.com/Lightning-AI/lit-gpt/blob/main/pretrain/tinyllama.py) to pretrain LLMs.\n\nFinally, the `StreamingDataset` is fast! Check out our [benchmark](https://lightning.ai/lightning-ai/studios/benchmark-cloud-data-loading-libraries).\n\nHere is an illustration showing how the `StreamingDataset` works.\n\n![An illustration showing how the Streaming Dataset works.](https://pl-flash-data.s3.amazonaws.com/streaming_dataset.gif)\n\n# \ud83c\udfac Getting Started\n\n## \ud83d\udcbe Installation\n\nLightning Data can be installed with `pip`:\n\n<!--pytest.mark.skip-->\n\n```bash\npip install --no-cache-dir git+https://github.com/Lightning-AI/lit-data.git@master\n```\n\n## \ud83c\udfc1 Quick Start\n\n### 1. Prepare Your Data\n\nConvert your raw dataset into Lightning Streaming format using the `optimize` operator. More formats are coming...\n\n<!--pytest.mark.skip-->\n\n```python\nimport numpy as np\nfrom lightning_data import optimize\nfrom PIL import Image\n\n\n# Store random images into the chunks\ndef random_images(index):\n    data = {\n        \"index\": index,\n        \"image\": Image.fromarray(np.random.randint(0, 256, (32, 32, 3), np.uint8)),\n        \"class\": np.random.randint(10),\n    }\n    return data # The data is serialized into bytes and stored into chunks by the optimize operator.\n\nif __name__ == \"__main__\":\n    optimize(\n        fn=random_images,  # The function applied over each input.\n        inputs=list(range(1000)),  # Provide any inputs. The fn is applied on each item.\n        output_dir=\"my_dataset\",  # The directory where the optimized data are stored.\n        num_workers=4,  # The number of workers. The inputs are distributed among them.\n        chunk_bytes=\"64MB\"  # The maximum number of bytes to write into a chunk.\n    )\n\n```\n\nThe `optimize` operator supports any data structures and types. Serialize whatever you want.\n\n### 2. Upload Your Data to Cloud Storage\n\nCloud providers such as [AWS](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html), [Google Cloud](https://cloud.google.com/storage/docs/uploading-objects?hl=en#upload-object-cli), [Azure](https://learn.microsoft.com/en-us/azure/import-export/storage-import-export-data-to-files?tabs=azure-portal-preview), etc.. provide command line client to upload your data to their storage.\n\nHere is an example with [AWS S3](https://aws.amazon.com/s3).\n\n```bash\n\u26a1 aws s3 cp --recursive my_dataset s3://my-bucket/my_dataset\n```\n\n### 3. Use StreamingDataset and DataLoader\n\n```python\nfrom lightning_data import StreamingDataset\nfrom torch.utils.data import DataLoader\n\n# Remote path where full dataset is persistently stored\ninput_dir = 's3://pl-flash-data/my_dataset'\n\n# Create streaming dataset\ndataset = StreamingDataset(input_dir, shuffle=True)\n\n# Check any elements\nsample = dataset[50]\nimg = sample['image']\ncls = sample['class']\n\n# Create PyTorch DataLoader\ndataloader = DataLoader(dataset)\n```\n\n## Transform data\n\nSimilar to `optimize`, the `map` operator can be used to transform data by applying a function over a list of item and persist all the files written inside the output directory.\n\n### 1. Put some images on a cloud storage\n\nWe generates 1000 images and upload them to AWS S3.\n\n```python\nimport os\nfrom PIL import Image\nimport numpy as np\n\ndata_dir = \"my_images\"\nos.makedirs(data_dir, exist_ok=True)\n\nfor i in range(1000):\n    width = np.random.randint(224, 320) \n    height = np.random.randint(224, 320) \n    image_path = os.path.join(data_dir, f\"{i}.JPEG\")\n    Image.fromarray(\n        np.random.randint(0, 256, (width, height, 3), np.uint8)\n    ).save(image_path, format=\"JPEG\", quality=90)\n```\n\n```bash\n\u26a1 aws s3 cp --recursive my_images s3://my-bucket/my_images\n```\n\n### 2. Resize the images\n\n```python\nimport os\nfrom lightning_data import map\nfrom PIL import Image\n\ninput_dir = \"s3://my-bucket/my_images\"\ninputs = [os.path.join(input_dir, f) for f in os.listdir(input_dir)]\n\ndef resize_image(image_path, output_dir):\n  output_image_path = os.path.join(output_dir, os.path.basename(image_path))\n  Image.open(image_path).resize((224, 224)).save(output_image_path)\n  \nif __name__ == \"__main__\":\n    map(\n        fn=resize_image,\n        inputs=inputs, \n        output_dir=\"s3://my-bucket/my_resized_images\",\n        num_workers=4,\n    )\n```\n\n# \ud83d\udcda End-to-end Lightning Studio Templates\n\nWe have end-to-end free [Studios](https://lightning.ai) showing all the steps to prepare the following datasets:\n\n| Dataset                                                                                                                                      |      Data type      |                                                                                                                                  Studio |\n| -------------------------------------------------------------------------------------------------------------------------------------------- | :-----------------: | --------------------------------------------------------------------------------------------------------------------------------------: |\n| [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/)                                                                                  | Image & description |            [Use or explore LAION-400MILLION dataset](https://lightning.ai/lightning-ai/studios/use-or-explore-laion-400million-dataset) |\n| [Chesapeake Roads Spatial Context](https://github.com/isaaccorley/chesapeakersc)                                                             |    Image & Mask     | [Convert GeoSpatial data to Lightning Streaming](https://lightning.ai/lightning-ai/studios/convert-spatial-data-to-lightning-streaming) |\n| [Imagenet 1M](https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=171)                                               |    Image & Label    |              [Benchmark cloud data-loading libraries](https://lightning.ai/lightning-ai/studios/benchmark-cloud-data-loading-libraries) |\n| [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B) & [StartCoder](https://huggingface.co/datasets/bigcode/starcoderdata) |        Text         |              [Prepare the TinyLlama 1T token dataset](https://lightning.ai/lightning-ai/studios/prepare-the-tinyllama-1t-token-dataset) |\n| [English Wikepedia](https://huggingface.co/datasets/wikipedia)                                                                               |        Text         |            [Embed English Wikipedia under 5 dollars](https://lightning.ai/lightning-ai/studios/embed-english-wikipedia-under-5-dollars) |\n| Generated                                                                                                                                    |    Parquet Files    |            [Convert parquets to Lightning Streaming](https://lightning.ai/lightning-ai/studios/convert-parquets-to-lightning-streaming) |\n\n[Lightning Studios](https://lightning.ai) are fully reproducible cloud IDE with data, code, dependencies, etc... Finally reproducible science.\n\n# \ud83d\udcc8 Easily scale data processing\n\nTo scale data processing, create a free account on [lightning.ai](https://lightning.ai/) platform. With the platform, the `optimize` and `map` can start multiple machines to make data processing drastically faster as follows:\n\n```python\nfrom lightning_data import optimize, Machine\n\noptimize(\n  ...\n  num_nodes=32,\n  machine=Machine.DATA_PREP, # You can select between dozens of optimized machines\n)\n```\n\nOR\n\n```python\nfrom lightning_data import map, Machine\n\nmap(\n  ...\n  num_nodes=32,\n  machine=Machine.DATA_PREP, # You can select between dozens of optimized machines\n)\n```\n\n<div align=\"center\">\n\n<img alt=\"Lightning\" src=\"https://pl-flash-data.s3.amazonaws.com/data-prep.jpg\" width=\"800px\" style=\"max-width: 100%;\">\n\n<br/>\n\nThe Data Prep Job UI from the [LAION 400M Studio](https://lightning.ai/lightning-ai/studios/use-or-explore-laion-400million-dataset) where we used 32 machines with 32 CPU each to download 400 million images in only 2 hours.\n\n</div>\n\n# \ud83d\udd11 Key Features\n\n## \ud83d\ude80 Multi-GPU / Multi-Node\n\nThe `StreamingDataset` and `StreamingDataLoader` takes care of everything for you. They automatically make sure each rank receives different batch of data. There is nothing for you to do if you use them.\n\n## \ud83c\udfa8 Easy data mixing\n\nYou can easily experiment with dataset mixtures using the CombinedStreamingDataset.\n\n```python\nfrom lightning_data import StreamingDataset, CombinedStreamingDataset\nfrom lightning_data.streaming.item_loader import TokensLoader\nfrom tqdm import tqdm\nimport os\nfrom torch.utils.data import DataLoader\n\ntrain_datasets = [\n    StreamingDataset(\n        input_dir=\"s3://tinyllama-template/slimpajama/train/\",\n        item_loader=TokensLoader(block_size=2048 + 1), # Optimized loader for tokens used by LLMs \n        shuffle=True,\n        drop_last=True,\n    ),\n    StreamingDataset(\n        input_dir=\"s3://tinyllama-template/starcoder/\",\n        item_loader=TokensLoader(block_size=2048 + 1), # Optimized loader for tokens used by LLMs \n        shuffle=True,\n        drop_last=True,\n    ),\n]\n\n# Mix SlimPajama data and Starcoder data with these proportions:\nweights = (0.693584, 0.306416)\ncombined_dataset = CombinedStreamingDataset(datasets=train_datasets, seed=42, weights=weights)\n\ntrain_dataloader = DataLoader(combined_dataset, batch_size=8, pin_memory=True, num_workers=os.cpu_count())\n\n# Iterate over the combined datasets\nfor batch in tqdm(train_dataloader):\n    pass\n```\n\n## \ud83d\udd18 Stateful StreamingDataLoader\n\nLightning Data provides a stateful `StreamingDataLoader`. This simplifies resuming training over large datasets.\n\nNote: The `StreamingDataLoader` is used by [Lit-GPT](https://github.com/Lightning-AI/lit-gpt/blob/main/pretrain/tinyllama.py) to pretrain LLMs. The statefulness still works when using a mixture of datasets with the `CombinedStreamingDataset`.\n\n```python\nimport os\nimport torch\nfrom lightning_data import StreamingDataset, StreamingDataLoader\n\ndataset = StreamingDataset(\"s3://my-bucket/my-data\", shuffle=True)\ndataloader = StreamingDataLoader(dataset, num_workers=os.cpu_count(), batch_size=64)\n\n#\u00a0Restore the dataLoader state if it exists\nif os.path.isfile(\"dataloader_state.pt\"):\n    state_dict = torch.load(\"dataloader_state.pt\")\n    dataloader.load_state_dict(state_dict)\n\n# Iterate over the data\nfor batch_idx, batch in enumerate(dataloader):\n  \n    # Store the state every 1000 batches\n    if batch_idx % 1000 == 0:\n        torch.save(dataloader.state_dict(), \"dataloader_state.pt\")\n```\n\n## \ud83c\udfa5 Profiling\n\nThe `StreamingDataLoader` supports profiling your data loading. Simply use the `profile_batches` argument as follows:\n\n```python\nfrom lightning_data import StreamingDataset, StreamingDataLoader\n\nStreamingDataLoader(..., profile_batches=5)\n```\n\nThis generates a Chrome trace called `result.json`. You can visualize this trace by opening Chrome browser at the `chrome://tracing` URL and load the trace inside.\n\n## \ud83e\ude87 Random access\n\nAccess the data you need when you need it.\n\n```python\nfrom lightning_data import StreamingDataset\n\ndataset = StreamingDataset(...)\n\nprint(len(dataset)) # display the length of your data\n\nprint(dataset[42]) # show the 42th element of the dataset\n```\n\n## \u2722 Use data transforms\n\n```python\nfrom lightning_data import StreamingDataset, StreamingDataLoader\nimport torchvision.transforms.v2.functional as F\n\nclass ImagenetStreamingDataset(StreamingDataset):\n\n    def __getitem__(self, index):\n        image = super().__getitem__(index)\n        return F.resize(image, (224, 224))\n\ndataset = ImagenetStreamingDataset(...)\ndataloader = StreamingDataLoader(dataset, batch_size=4)\n\nfor batch in dataloader:\n    print(batch.shape)\n    # Out: (4, 3, 224, 224)\n```\n\n## \u2699\ufe0f Disk usage limits\n\nLimit the size of the cache holding the chunks.\n\n```python\nfrom lightning_data import StreamingDataset\n\ndataset = StreamingDataset(..., max_cache_size=\"10GB\")\n```\n\n## \ud83d\udcbe Support yield\n\nWhen processing large files like compressed [parquet files](https://en.wikipedia.org/wiki/Apache_Parquet), you can use python yield to process and store one item at the time.\n\n```python\nfrom pathlib import Path\nimport pyarrow.parquet as pq\nfrom lightning_data import optimize\nfrom tokenizer import Tokenizer\nfrom functools import partial\n\n# 1. Define a function to convert the text within the parquet files into tokens\ndef tokenize_fn(filepath, tokenizer=None):\n    parquet_file = pq.ParquetFile(filepath)\n    # Process per batch to reduce RAM usage\n    for batch in parquet_file.iter_batches(batch_size=8192, columns=[\"content\"]):\n        for text in batch.to_pandas()[\"content\"]:\n            yield tokenizer.encode(text, bos=False, eos=True)\n\n# 2. Generate the inputs\ninput_dir = \"/teamspace/s3_connections/tinyllama-template\"\ninputs = [str(file) for file in Path(f\"{input_dir}/starcoderdata\").rglob(\"*.parquet\")]\n\n# 3. Store the optimized data wherever you want under \"/teamspace/datasets\" or \"/teamspace/s3_connections\"\noutputs = optimize(\n    fn=partial(tokenize_fn, tokenizer=Tokenizer(f\"{input_dir}/checkpoints/Llama-2-7b-hf\")), # Note: You can use HF tokenizer or any others\n    inputs=inputs,\n    output_dir=\"/teamspace/datasets/starcoderdata\",\n    chunk_size=(2049 * 8012),\n)\n```\n\n# \u26a1 Contributors\n\nWe welcome any contributions, pull requests, or issues. If you use the Streaming Dataset for your own project, please reach out to us on Slack or Discord.\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "The Deep Learning framework to train, deploy, and ship AI products Lightning fast.",
    "version": "0.2.0.dev0",
    "project_urls": {
        "Bug Tracker": "https://github.com/Lightning-AI/lit-data/issues",
        "Documentation": "https://lightning-ai.github.io/lit-data/",
        "Download": "https://github.com/Lightning-AI/lit-data",
        "Homepage": "https://github.com/Lightning-AI/lit-data",
        "Source Code": "https://github.com/Lightning-AI/lit-data"
    },
    "split_keywords": [
        "deep learning",
        "pytorch",
        "ai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "90e7c0af0668f7dac4e3fdc12a5b51e1e49d6a85557253526bc5f3af9f6cc49c",
                "md5": "3a375c9b42d5fac0529d31fc64f7910f",
                "sha256": "139a877382d666990941df66a3a432d84a6822f3ad9f757b5c25bf231d25c527"
            },
            "downloads": -1,
            "filename": "lightning_data-0.2.0.dev0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3a375c9b42d5fac0529d31fc64f7910f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 78840,
            "upload_time": "2024-02-19T12:36:39",
            "upload_time_iso_8601": "2024-02-19T12:36:39.259928Z",
            "url": "https://files.pythonhosted.org/packages/90/e7/c0af0668f7dac4e3fdc12a5b51e1e49d6a85557253526bc5f3af9f6cc49c/lightning_data-0.2.0.dev0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "00e0719c16110f48d71a858c1fda5abaf5f56efce618a134fd7de02f18a75bd6",
                "md5": "d8e4daeeffc103959faeb3209e917504",
                "sha256": "28367a0eb7311ade25bff3674b8252b85c95dfc22605057846d5a0b2cd44297d"
            },
            "downloads": -1,
            "filename": "lightning-data-0.2.0.dev0.tar.gz",
            "has_sig": false,
            "md5_digest": "d8e4daeeffc103959faeb3209e917504",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 67265,
            "upload_time": "2024-02-19T12:36:40",
            "upload_time_iso_8601": "2024-02-19T12:36:40.954235Z",
            "url": "https://files.pythonhosted.org/packages/00/e0/719c16110f48d71a858c1fda5abaf5f56efce618a134fd7de02f18a75bd6/lightning-data-0.2.0.dev0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-19 12:36:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Lightning-AI",
    "github_project": "lit-data",
    "github_not_found": true,
    "lcname": "lightning-data"
}
        
Elapsed time: 0.60763s