[](https://github.com/mako10k/mcp-assoc-memory/actions)
[](./htmlcov/index.html)
[](./LICENSE)
[](https://pypi.org/project/mcp-assoc-memory/)
# MCP Associative Memory Server
๐ง **Production-Ready Intelligent Memory System** - Store, search, and discover knowledge connections using the Model Context Protocol (MCP) with **74/74 tests passing** and **complete CI/CD pipeline**.
## ๐ Production Status (July 2025)
**โ
ENTERPRISE-READY:**
- **74/74 tests passing** (100% success rate)
- **Complete CI/CD pipeline** with security and quality gates
- **10 MCP tools** for comprehensive memory management
- **Sub-second performance** with optimized vector search
- **Docker containerized** for production deployment
## ๐ Overview
Transform your development workflow with an AI-powered memory system that:
- **Stores insights** from your daily work and learning
- **Finds related knowledge** when you need it most
- **Discovers unexpected connections** between ideas
- **Organizes knowledge** in intuitive hierarchical scopes
- **Syncs across environments** for seamless workflow integration
Built with **FastMCP 2.0** for modern LLM integration, optimized for **GitHub Copilot** workflows.
## โจ Key Features
### ๐ง **Intelligent Memory Operations**
- **Semantic Search**: Find relevant memories using natural language queries
- **Association Discovery**: Automatically discover connections between concepts
- **Complete CRUD**: Create, Read, Update, Delete with full lifecycle management
- **Smart Organization**: Hierarchical scopes with auto-categorization
### ๐ **Advanced Discovery**
- **Top-K Search**: Optimized threshold (0.1) with LLM-guided relevance judgment
- **Cross-Scope Associations**: Find connections across different knowledge scopes
- **Similarity Scoring**: Transparent relevance metrics for intelligent filtering
- **Creative Connections**: Discover unexpected relationships for innovation
### ๐๏ธ **Powerful Organization**
- **Hierarchical Scopes**: `work/projects/name`, `learning/technology`, `personal/ideas`
- **Flexible Categorization**: Tags, metadata, and automatic scope suggestions
- **Session Management**: Temporary workspaces for project isolation
- **Memory Movement**: Reorganize knowledge as understanding evolves
### ๐ **Cross-Environment Sync**
- **Export/Import**: Backup and restore memories across development environments
- **Multiple Formats**: JSON, YAML with compression support
- **Merge Strategies**: Handle duplicates intelligently during sync
- **Git Workflow**: Integrate memory backup into version control processes
### ๐ ๏ธ **Developer Experience**
- **GitHub Copilot Integration**: Natural language memory operations
- **VS Code Tasks**: One-click server management and maintenance
- **Real-time Association**: Automatic relationship discovery during storage
- **Performance Optimized**: Sub-second search across thousands of memories
- **Response Level Control**: Minimal, standard, or full detail responses for optimal token usage
### โก **Smart Response Levels**
Control response detail and token usage with three intelligent levels:
- **`minimal`**: Essential information only (~50 tokens) - Perfect for status checks and basic operations
- **`standard`**: Balanced detail for workflow continuity (default) - Optimal for most use cases
- **`full`**: Comprehensive data including metadata, associations, and analysis - Ideal for debugging and detailed exploration
**Example Usage:**
```python
# Quick status check
memory_store(content="meeting notes", response_level="minimal")
# Returns: {"success": true, "message": "Memory stored", "memory_id": "..."}
# Full debugging info
memory_search(query="project ideas", response_level="full")
# Returns: Complete results with similarity scores, metadata, associations
```
## ๐ฏ Complete MCP Tool Suite
### ๐ **Modern API (10 Clean Tools)**
### Core Operations (Primary API)
- **`memory_store`** - Store new memories with auto-association
- **`memory_search`** - Unified search with standard and diversified modes
- **`memory_manage`** - Get, update, and delete memory operations
- **`memory_sync`** - Import and export memories for backup/sync
### Discovery and Analysis
- **`memory_discover_associations`** - Find semantically related memories
- **`memory_list_all`** - Browse complete memory collection with pagination
### Organization Management
- **`scope_list`** - Browse hierarchical memory organization
- **`scope_suggest`** - AI-powered scope recommendations
- **`memory_move`** - Reorganize memories into better categories
### Session Management
- **`session_manage`** - Create, list, and cleanup temporary working sessions
### ๐ฏ **Clean, Modern API**
All tools use intuitive, natural names with powerful unified interfaces for better developer experience.
## ๐ Comprehensive Documentation
### ๐ **[Quick Start Guide](docs/user-guide/QUICK_START.md)**
Get up and running in 5 minutes with essential commands and patterns.
### ๐ก **[Best Practices](docs/user-guide/BEST_PRACTICES.md)**
Comprehensive guide to optimizing your associative memory workflow.
### ๐ง **[API Reference](docs/api-reference/README.md)**
Complete technical documentation for all MCP tools and parameters.
### ๐ข **[Real-World Examples](docs/examples/README.md)**
Practical usage patterns for developers, teams, and organizations.
### ๐ **[Troubleshooting Guide](docs/troubleshooting/README.md)**
Solutions for common issues and system maintenance procedures.
### ๐ **[Sample Data](examples/sample-data/README.md)**
Ready-to-import memory dataset with 28 curated memories demonstrating system capabilities.
## ๐ **[Complete Documentation โ](docs/README.md)**
## Architecture
```
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ LLM Client โโโโโโ FastMCP Server โโโโโโ Memory Store โ
โ โ โ โ โ โ
โ - Claude โ โ - @app.tool() โ โ - ChromaDB โ
โ - ChatGPT โ โ - @app.resource()โ โ - SQLite โ
โ - Custom LLM โ โ - @app.prompt() โ โ - NetworkX โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
```
## Technology Stack
- **Language**: Python 3.11+
- **MCP Framework**: FastMCP 2.0
- **Vector Database**: ChromaDB
- **Embedding Model**: OpenAI Embeddings / Sentence Transformers
- **Graph Database**: NetworkX (in-memory)
- **Storage**: SQLite (metadata)
## Installation & Usage
For detailed setup instructions, see `docs/installation.md`.
## Server Startup
### Direct STDIO Mode (Recommended)
**Standard MCP startup method:**
```bash
python -m mcp_assoc_memory.server --config config.json
```
The server operates in **STDIO mode** for direct MCP client integration. This is the recommended approach for VS Code Copilot and other MCP clients.
### Configuration
- Copy `config.json.template` to `config.json`
- Set your OpenAI API key for embeddings
- Configure transport options (STDIO enabled by default)
### Environment Variables
- `OPENAI_API_KEY`: Required for OpenAI embeddings
- `MCP_LOG_LEVEL`: Set logging level (DEBUG, INFO, WARNING, ERROR)
## ๐ ๏ธ Installation (PyPI, pipx, GitHub)
### Recommended: PyPI
```bash
pip install mcp-assoc-memory
```
### pipx (isolated global install)
```bash
pipx install mcp-assoc-memory
```
### GitHub (latest/dev version)
```bash
pip install git+https://github.com/mako10k/mcp-assoc-memory.git
# or
pipx install git+https://github.com/mako10k/mcp-assoc-memory.git
```
### Start the server (after install)
```bash
python -m mcp_assoc_memory.server --config config.json
```
- Configure via `.vscode/mcp.json` for VS Code Copilot integration
- MCPใฏใฉใคใขใณใใ่ชๅๆคๅบใใผใซ๏ผClaude Desktop Extensions, FastMCP, Cursor็ญ๏ผใใใ่ชๅ่ช่ญใใใพใใ
- Dockerใคใกใผใธใ่ฟๆฅๅ
ฌ้ไบๅฎใ
---
## Developer Information
### Development Guidelines
๐ค **AI Development Agent**: [development/workflow/AGENT.md](development/workflow/AGENT.md)
๐ **GitHub Copilot Rules**: [.github/copilot-instructions.md](.github/copilot-instructions.md)
๐ **Development Workflow**: [development/workflow/DEVELOPER_GUIDELINES.md](development/workflow/DEVELOPER_GUIDELINES.md)
---
## โ
Quality Status
All code passes **mypy (type check)**, **flake8 (lint)**, and **pytest (unit/integration tests)** as of July 2025.
CI/CD pipeline enforces these checks for every commit.
### Technical Reference
- **[System Architecture](development/architecture/)** - Architecture and structure documentation
- **[Technical Specifications](development/specifications/)** - API specs and feature details
- **[Security & Configuration](development/security/)** - Authentication and transport configuration
- **[Knowledge Base](development/knowledge/)** - Curated development knowledge
- **[Complete Development Docs โ](development/README.md)**
### Contributing
1. Check [development guidelines](development/workflow/DEVELOPER_GUIDELINES.md) before contributing
2. Review [architecture documentation](development/architecture/) for system understanding
3. Follow [GitHub Copilot instructions](.github/copilot-instructions.md) for AI-assisted development
4. Update relevant documentation when making changes
## ๐ Quick Start
### 1. Clone the repository
```bash
git clone https://github.com/mako10k/mcp-assoc-memory.git
cd mcp-assoc-memory
```
### 2. Set up your environment
```bash
python -m venv venv
source venv/bin/activate # Linux/Mac
# or
venv\Scripts\activate # Windows
```
### 3. Install dependencies
```bash
pip install -r requirements.txt
pip install -r requirements-dev.txt
```
### 4. Run tests and linting
```bash
python scripts/smart_lint.py
pytest tests/ -v
```
### 5. Start the MCP server
```bash
python -m mcp_assoc_memory.server --config config.json
```
For Docker users:
```bash
docker-compose up --build
```
---
## License
MIT License
Raw data
{
"_id": null,
"home_page": null,
"name": "mcp-assoc-memory",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "mcp, llm, memory, associative, vector, embedding",
"author": null,
"author_email": "Makoto Katsumata <mako10k@mk10.org>",
"download_url": "https://files.pythonhosted.org/packages/08/99/7979f34dba917f3c6a7142f1f6371743989afc086057058741bb874d5676/mcp_assoc_memory-0.1.3.tar.gz",
"platform": null,
"description": "[](https://github.com/mako10k/mcp-assoc-memory/actions)\n[](./htmlcov/index.html)\n[](./LICENSE)\n[](https://pypi.org/project/mcp-assoc-memory/)\n\n# MCP Associative Memory Server\n\n\ud83e\udde0 **Production-Ready Intelligent Memory System** - Store, search, and discover knowledge connections using the Model Context Protocol (MCP) with **74/74 tests passing** and **complete CI/CD pipeline**.\n\n## \ud83c\udfc6 Production Status (July 2025)\n\n**\u2705 ENTERPRISE-READY:**\n- **74/74 tests passing** (100% success rate)\n- **Complete CI/CD pipeline** with security and quality gates\n- **10 MCP tools** for comprehensive memory management\n- **Sub-second performance** with optimized vector search\n- **Docker containerized** for production deployment\n\n## \ud83c\udf1f Overview\n\nTransform your development workflow with an AI-powered memory system that:\n- **Stores insights** from your daily work and learning\n- **Finds related knowledge** when you need it most \n- **Discovers unexpected connections** between ideas\n- **Organizes knowledge** in intuitive hierarchical scopes\n- **Syncs across environments** for seamless workflow integration\n\nBuilt with **FastMCP 2.0** for modern LLM integration, optimized for **GitHub Copilot** workflows.\n\n## \u2728 Key Features\n\n### \ud83e\udde0 **Intelligent Memory Operations**\n- **Semantic Search**: Find relevant memories using natural language queries\n- **Association Discovery**: Automatically discover connections between concepts\n- **Complete CRUD**: Create, Read, Update, Delete with full lifecycle management\n- **Smart Organization**: Hierarchical scopes with auto-categorization\n\n### \ud83d\udd0d **Advanced Discovery**\n- **Top-K Search**: Optimized threshold (0.1) with LLM-guided relevance judgment\n- **Cross-Scope Associations**: Find connections across different knowledge scopes\n- **Similarity Scoring**: Transparent relevance metrics for intelligent filtering\n- **Creative Connections**: Discover unexpected relationships for innovation\n\n### \ud83d\uddc2\ufe0f **Powerful Organization**\n- **Hierarchical Scopes**: `work/projects/name`, `learning/technology`, `personal/ideas`\n- **Flexible Categorization**: Tags, metadata, and automatic scope suggestions\n- **Session Management**: Temporary workspaces for project isolation\n- **Memory Movement**: Reorganize knowledge as understanding evolves\n\n### \ud83d\udd04 **Cross-Environment Sync**\n- **Export/Import**: Backup and restore memories across development environments\n- **Multiple Formats**: JSON, YAML with compression support\n- **Merge Strategies**: Handle duplicates intelligently during sync\n- **Git Workflow**: Integrate memory backup into version control processes\n\n### \ud83d\udee0\ufe0f **Developer Experience**\n- **GitHub Copilot Integration**: Natural language memory operations\n- **VS Code Tasks**: One-click server management and maintenance\n- **Real-time Association**: Automatic relationship discovery during storage\n- **Performance Optimized**: Sub-second search across thousands of memories\n- **Response Level Control**: Minimal, standard, or full detail responses for optimal token usage\n\n### \u26a1 **Smart Response Levels**\nControl response detail and token usage with three intelligent levels:\n\n- **`minimal`**: Essential information only (~50 tokens) - Perfect for status checks and basic operations\n- **`standard`**: Balanced detail for workflow continuity (default) - Optimal for most use cases \n- **`full`**: Comprehensive data including metadata, associations, and analysis - Ideal for debugging and detailed exploration\n\n**Example Usage:**\n```python\n# Quick status check\nmemory_store(content=\"meeting notes\", response_level=\"minimal\")\n# Returns: {\"success\": true, \"message\": \"Memory stored\", \"memory_id\": \"...\"}\n\n# Full debugging info\nmemory_search(query=\"project ideas\", response_level=\"full\") \n# Returns: Complete results with similarity scores, metadata, associations\n```\n\n## \ud83c\udfaf Complete MCP Tool Suite\n\n### \ud83d\ude80 **Modern API (10 Clean Tools)**\n\n### Core Operations (Primary API)\n- **`memory_store`** - Store new memories with auto-association\n- **`memory_search`** - Unified search with standard and diversified modes\n- **`memory_manage`** - Get, update, and delete memory operations \n- **`memory_sync`** - Import and export memories for backup/sync\n\n### Discovery and Analysis\n- **`memory_discover_associations`** - Find semantically related memories\n- **`memory_list_all`** - Browse complete memory collection with pagination\n\n### Organization Management \n- **`scope_list`** - Browse hierarchical memory organization\n- **`scope_suggest`** - AI-powered scope recommendations\n- **`memory_move`** - Reorganize memories into better categories\n\n### Session Management\n- **`session_manage`** - Create, list, and cleanup temporary working sessions\n\n### \ud83c\udfaf **Clean, Modern API**\nAll tools use intuitive, natural names with powerful unified interfaces for better developer experience.\n\n## \ud83d\udcda Comprehensive Documentation\n\n### \ud83d\ude80 **[Quick Start Guide](docs/user-guide/QUICK_START.md)**\nGet up and running in 5 minutes with essential commands and patterns.\n\n### \ud83d\udca1 **[Best Practices](docs/user-guide/BEST_PRACTICES.md)** \nComprehensive guide to optimizing your associative memory workflow.\n\n### \ud83d\udd27 **[API Reference](docs/api-reference/README.md)**\nComplete technical documentation for all MCP tools and parameters.\n\n### \ud83c\udfe2 **[Real-World Examples](docs/examples/README.md)**\nPractical usage patterns for developers, teams, and organizations.\n\n### \ud83c\udd98 **[Troubleshooting Guide](docs/troubleshooting/README.md)**\nSolutions for common issues and system maintenance procedures.\n\n### \ud83d\udcca **[Sample Data](examples/sample-data/README.md)**\nReady-to-import memory dataset with 28 curated memories demonstrating system capabilities.\n\n## \ud83d\ude80 **[Complete Documentation \u2192](docs/README.md)**\n\n## Architecture\n\n```\n\u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510 \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510 \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\n\u2502 LLM Client \u2502\u2500\u2500\u2500\u2500\u2502 FastMCP Server \u2502\u2500\u2500\u2500\u2500\u2502 Memory Store \u2502\n\u2502 \u2502 \u2502 \u2502 \u2502 \u2502\n\u2502 - Claude \u2502 \u2502 - @app.tool() \u2502 \u2502 - ChromaDB \u2502\n\u2502 - ChatGPT \u2502 \u2502 - @app.resource()\u2502 \u2502 - SQLite \u2502\n\u2502 - Custom LLM \u2502 \u2502 - @app.prompt() \u2502 \u2502 - NetworkX \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518 \u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518 \u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n```\n\n## Technology Stack\n\n- **Language**: Python 3.11+\n- **MCP Framework**: FastMCP 2.0\n- **Vector Database**: ChromaDB\n- **Embedding Model**: OpenAI Embeddings / Sentence Transformers \n- **Graph Database**: NetworkX (in-memory)\n- **Storage**: SQLite (metadata)\n\n## Installation & Usage\n\nFor detailed setup instructions, see `docs/installation.md`.\n\n## Server Startup\n\n### Direct STDIO Mode (Recommended)\n\n**Standard MCP startup method:**\n\n```bash\npython -m mcp_assoc_memory.server --config config.json\n```\n\nThe server operates in **STDIO mode** for direct MCP client integration. This is the recommended approach for VS Code Copilot and other MCP clients.\n\n### Configuration\n\n- Copy `config.json.template` to `config.json`\n- Set your OpenAI API key for embeddings\n- Configure transport options (STDIO enabled by default)\n\n### Environment Variables\n\n- `OPENAI_API_KEY`: Required for OpenAI embeddings\n- `MCP_LOG_LEVEL`: Set logging level (DEBUG, INFO, WARNING, ERROR)\n\n## \ud83d\udee0\ufe0f Installation (PyPI, pipx, GitHub)\n\n### Recommended: PyPI\n```bash\npip install mcp-assoc-memory\n```\n\n### pipx (isolated global install)\n```bash\npipx install mcp-assoc-memory\n```\n\n### GitHub (latest/dev version)\n```bash\npip install git+https://github.com/mako10k/mcp-assoc-memory.git\n# or\npipx install git+https://github.com/mako10k/mcp-assoc-memory.git\n```\n\n\n### Start the server (after install)\n```bash\npython -m mcp_assoc_memory.server --config config.json\n```\n\n- Configure via `.vscode/mcp.json` for VS Code Copilot integration\n- MCP\u30af\u30e9\u30a4\u30a2\u30f3\u30c8\u3084\u81ea\u52d5\u691c\u51fa\u30c4\u30fc\u30eb\uff08Claude Desktop Extensions, FastMCP, Cursor\u7b49\uff09\u304b\u3089\u3082\u81ea\u52d5\u8a8d\u8b58\u3055\u308c\u307e\u3059\u3002\n- Docker\u30a4\u30e1\u30fc\u30b8\u3082\u8fd1\u65e5\u516c\u958b\u4e88\u5b9a\u3002\n\n---\n\n## Developer Information\n\n\n### Development Guidelines\n\n\ud83e\udd16 **AI Development Agent**: [development/workflow/AGENT.md](development/workflow/AGENT.md) \n\ud83d\udccb **GitHub Copilot Rules**: [.github/copilot-instructions.md](.github/copilot-instructions.md) \n\ud83d\udd04 **Development Workflow**: [development/workflow/DEVELOPER_GUIDELINES.md](development/workflow/DEVELOPER_GUIDELINES.md)\n\n---\n\n## \u2705 Quality Status\n\nAll code passes **mypy (type check)**, **flake8 (lint)**, and **pytest (unit/integration tests)** as of July 2025. \nCI/CD pipeline enforces these checks for every commit.\n\n### Technical Reference\n\n- **[System Architecture](development/architecture/)** - Architecture and structure documentation\n- **[Technical Specifications](development/specifications/)** - API specs and feature details\n- **[Security & Configuration](development/security/)** - Authentication and transport configuration\n- **[Knowledge Base](development/knowledge/)** - Curated development knowledge\n- **[Complete Development Docs \u2192](development/README.md)**\n\n### Contributing\n\n1. Check [development guidelines](development/workflow/DEVELOPER_GUIDELINES.md) before contributing\n2. Review [architecture documentation](development/architecture/) for system understanding\n3. Follow [GitHub Copilot instructions](.github/copilot-instructions.md) for AI-assisted development\n4. Update relevant documentation when making changes\n\n## \ud83d\ude80 Quick Start\n\n### 1. Clone the repository\n```bash\ngit clone https://github.com/mako10k/mcp-assoc-memory.git\ncd mcp-assoc-memory\n```\n\n### 2. Set up your environment\n```bash\npython -m venv venv\nsource venv/bin/activate # Linux/Mac\n# or\nvenv\\Scripts\\activate # Windows\n```\n\n### 3. Install dependencies\n```bash\npip install -r requirements.txt\npip install -r requirements-dev.txt\n```\n\n### 4. Run tests and linting\n```bash\npython scripts/smart_lint.py\npytest tests/ -v\n```\n\n### 5. Start the MCP server\n```bash\npython -m mcp_assoc_memory.server --config config.json\n```\n\nFor Docker users:\n```bash\ndocker-compose up --build\n```\n\n---\n\n## License\n\nMIT License\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Associative Memory MCP Server for LLMs - Knowledge management system with hierarchical scope organization",
"version": "0.1.3",
"project_urls": {
"Documentation": "https://github.com/mako10k/mcp-assoc-memory/blob/main/README.md",
"Homepage": "https://github.com/mako10k/mcp-assoc-memory",
"Issues": "https://github.com/mako10k/mcp-assoc-memory/issues",
"Repository": "https://github.com/mako10k/mcp-assoc-memory"
},
"split_keywords": [
"mcp",
" llm",
" memory",
" associative",
" vector",
" embedding"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "ee82137acfa3a9ed20e194b003d7520c201b24c9ffdfcb97d06f7d2c525bddf0",
"md5": "52b8c2200d4c0e6df372feedad9edba8",
"sha256": "3e49c4d5cc6e26760a9d08c6c9ee5efd4cb4f3f6419425e7ca9787c1bd6eeb36"
},
"downloads": -1,
"filename": "mcp_assoc_memory-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "52b8c2200d4c0e6df372feedad9edba8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 138700,
"upload_time": "2025-07-16T06:24:10",
"upload_time_iso_8601": "2025-07-16T06:24:10.483238Z",
"url": "https://files.pythonhosted.org/packages/ee/82/137acfa3a9ed20e194b003d7520c201b24c9ffdfcb97d06f7d2c525bddf0/mcp_assoc_memory-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "08997979f34dba917f3c6a7142f1f6371743989afc086057058741bb874d5676",
"md5": "d313844f623ed3a9558238ab0f87c31b",
"sha256": "115287395357fff32853171c413f09cda1f87e7b48b22f24a95e8620b3fcf35b"
},
"downloads": -1,
"filename": "mcp_assoc_memory-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "d313844f623ed3a9558238ab0f87c31b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 122763,
"upload_time": "2025-07-16T06:24:12",
"upload_time_iso_8601": "2025-07-16T06:24:12.313183Z",
"url": "https://files.pythonhosted.org/packages/08/99/7979f34dba917f3c6a7142f1f6371743989afc086057058741bb874d5676/mcp_assoc_memory-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-16 06:24:12",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mako10k",
"github_project": "mcp-assoc-memory",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "fastmcp",
"specs": [
[
">=",
"2.10.0"
]
]
},
{
"name": "pydantic",
"specs": [
[
">=",
"2.0.0"
]
]
},
{
"name": "openai",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "sentence-transformers",
"specs": [
[
">=",
"2.2.0"
]
]
},
{
"name": "chromadb",
"specs": [
[
">=",
"0.4.0"
]
]
},
{
"name": "networkx",
"specs": [
[
">=",
"3.0"
]
]
},
{
"name": "fastapi",
"specs": [
[
">=",
"0.104.0"
]
]
},
{
"name": "uvicorn",
"specs": [
[
">=",
"0.24.0"
]
]
},
{
"name": "python-multipart",
"specs": [
[
">=",
"0.0.6"
]
]
},
{
"name": "SQLAlchemy",
"specs": [
[
">=",
"2.0.0"
]
]
},
{
"name": "aiosqlite",
"specs": [
[
">=",
"0.19.0"
]
]
},
{
"name": "pyjwt",
"specs": [
[
">=",
"2.8.0"
]
]
},
{
"name": "bcrypt",
"specs": [
[
">=",
"4.0.0"
]
]
},
{
"name": "python-dotenv",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "jinja2",
"specs": [
[
">=",
"3.1.0"
]
]
},
{
"name": "graphviz",
"specs": [
[
">=",
"0.20.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.24.0"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"2.0.0"
]
]
},
{
"name": "sse-starlette",
"specs": [
[
">=",
"1.6.1"
]
]
},
{
"name": "websockets",
"specs": [
[
">=",
"11.0.3"
]
]
}
],
"lcname": "mcp-assoc-memory"
}