mtrust-medical


Namemtrust-medical JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/NMNayan57/mtrush_medical.git
SummaryM-TRUST: Bias detection and mitigation for medical AI
upload_time2025-08-10 06:05:19
maintainerNone
docs_urlNone
authorNasim Mahmud Nayan
requires_python>=3.8
licenseNone
keywords medical ai bias fairness healthcare trustworthy
VCS
bugtrack_url
requirements numpy pandas torch scikit-learn Pillow tqdm
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # M-TRUST: Multimodal Trustworthy Healthcare AI

[![PyPI version](https://badge.fury.io/py/mtrust-medical.svg)](https://badge.fury.io/py/mtrust-medical)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)

## 🏥 Make ANY Medical AI Model Fair and Trustworthy

M-TRUST is a bias detection and mitigation framework that wraps any medical AI model to ensure fairness across patient demographics.

## ✨ Features

- 🎯 **4 Types of Bias Detection**: Demographic, Quality, Annotation, Amplification
- 🛡️ **Real-time Bias Mitigation**: Automatic fairness adjustments
- 📊 **Fairness Metrics**: Track and report bias metrics
- 🔧 **Easy Integration**: One line to wrap any model
- 🏥 **Medical-Specific**: Designed for healthcare AI

## 📦 Installation

```bash
pip install mtrust-medical

Full Example in docs/getting_started.md](docs/getting_started.md)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/NMNayan57/mtrush_medical.git",
    "name": "mtrust-medical",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "medical ai bias fairness healthcare trustworthy",
    "author": "Nasim Mahmud Nayan",
    "author_email": "smnoyan670@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/6a/e7/f2a0c7379ca1968665dcf3d14bee8d44f7389f23e629e7fba8868e7b3687/mtrust_medical-1.0.1.tar.gz",
    "platform": null,
    "description": "# M-TRUST: Multimodal Trustworthy Healthcare AI\r\n\r\n[![PyPI version](https://badge.fury.io/py/mtrust-medical.svg)](https://badge.fury.io/py/mtrust-medical)\r\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\r\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\r\n\r\n## \ud83c\udfe5 Make ANY Medical AI Model Fair and Trustworthy\r\n\r\nM-TRUST is a bias detection and mitigation framework that wraps any medical AI model to ensure fairness across patient demographics.\r\n\r\n## \u2728 Features\r\n\r\n- \ud83c\udfaf **4 Types of Bias Detection**: Demographic, Quality, Annotation, Amplification\r\n- \ud83d\udee1\ufe0f **Real-time Bias Mitigation**: Automatic fairness adjustments\r\n- \ud83d\udcca **Fairness Metrics**: Track and report bias metrics\r\n- \ud83d\udd27 **Easy Integration**: One line to wrap any model\r\n- \ud83c\udfe5 **Medical-Specific**: Designed for healthcare AI\r\n\r\n## \ud83d\udce6 Installation\r\n\r\n```bash\r\npip install mtrust-medical\r\n\r\nFull Example in docs/getting_started.md](docs/getting_started.md)\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "M-TRUST: Bias detection and mitigation for medical AI",
    "version": "1.0.1",
    "project_urls": {
        "Bug Reports": "https://github.com/NMNayan57/mtrush_medical/issues",
        "Homepage": "https://github.com/NMNayan57/mtrush_medical.git",
        "Source": "https://github.com/NMNayan57/mtrush_medical"
    },
    "split_keywords": [
        "medical",
        "ai",
        "bias",
        "fairness",
        "healthcare",
        "trustworthy"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "90e89a9af57ef036764c33ccfe1c9379e8983449c1605d25e0380d6bac9fcb1b",
                "md5": "1d82d85b51c4dec8c2bb6919c0396021",
                "sha256": "a6d0884890cbb00c9400128931db735da4af80a71c5063b4aa4cfbf6c73e2692"
            },
            "downloads": -1,
            "filename": "mtrust_medical-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1d82d85b51c4dec8c2bb6919c0396021",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 13513,
            "upload_time": "2025-08-10T06:05:18",
            "upload_time_iso_8601": "2025-08-10T06:05:18.832332Z",
            "url": "https://files.pythonhosted.org/packages/90/e8/9a9af57ef036764c33ccfe1c9379e8983449c1605d25e0380d6bac9fcb1b/mtrust_medical-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6ae7f2a0c7379ca1968665dcf3d14bee8d44f7389f23e629e7fba8868e7b3687",
                "md5": "424ed6f02d833d471a314c2de106ecd7",
                "sha256": "de470f0161831c2c36812a34e7a9aea41ec2536b0361692f04485e7ba40c6979"
            },
            "downloads": -1,
            "filename": "mtrust_medical-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "424ed6f02d833d471a314c2de106ecd7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 11810,
            "upload_time": "2025-08-10T06:05:19",
            "upload_time_iso_8601": "2025-08-10T06:05:19.885667Z",
            "url": "https://files.pythonhosted.org/packages/6a/e7/f2a0c7379ca1968665dcf3d14bee8d44f7389f23e629e7fba8868e7b3687/mtrust_medical-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-10 06:05:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NMNayan57",
    "github_project": "mtrush_medical",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.9.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "0.24.0"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    ">=",
                    "8.0.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    ">=",
                    "4.62.0"
                ]
            ]
        }
    ],
    "lcname": "mtrust-medical"
}
        
Elapsed time: 1.49702s