# mulearn
[![Documentation Status](https://readthedocs.org/projects/mulearn/badge/?version=latest)](https://mulearn.readthedocs.io/en/latest/?badge=latest)
> A python package for inducing membership functions from labeled data
mulearn is a python package implementing the metodology for data-driven induction of fuzzy sets described in
- D. Malchiodi and W. Pedrycz, _Learning Membership Functions for Fuzzy Sets through Modified Support Vector Clustering_, in F. Masulli, G. Pasi e R. Yager (Eds.), Fuzzy Logic and Applications. 10th International Workshop, WILF 2013, Genoa, Italy, November 19–22, 2013. Proceedings., Vol. 8256, Springer International Publishing, Switzerland, Lecture Notes on Artificial Intelligence, 2013;
- D. Malchiodi and A. G. B. Tettamanzi, _Predicting the Possibilistic Score of OWL Axioms through Modified Support Vector Clustering_, in H. Haddad, R. L. Wainwright e R. Chbeir (Eds.), SAC'18: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, ACM (ISBN 9781450351911), 1984–1991, 2018.
## Install
The package can easily be installed:
- via `pip`, by running `pip install mulearn` in a terminal;
- cloning this repo.
APIs are described at https://mulearn.readthedocs.io/.
Raw data
{
"_id": null,
"home_page": null,
"name": "mulearn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "fuzzy set, fuzzy membership, machine learning",
"author": null,
"author_email": "Dario Malchiodi <dario.malchiodi@unimi.it>",
"download_url": "https://files.pythonhosted.org/packages/c7/5a/672cffb23064b099fe8e784ca15fe3443377065dc88b5676975aaf0b80ee/mulearn-1.1.1.tar.gz",
"platform": null,
"description": "# mulearn\n\n[![Documentation Status](https://readthedocs.org/projects/mulearn/badge/?version=latest)](https://mulearn.readthedocs.io/en/latest/?badge=latest)\n\n> A python package for inducing membership functions from labeled data\n\n\nmulearn is a python package implementing the metodology for data-driven induction of fuzzy sets described in\n\n- D. Malchiodi and W. Pedrycz, _Learning Membership Functions for Fuzzy Sets through Modified Support Vector Clustering_, in F. Masulli, G. Pasi e R. Yager (Eds.), Fuzzy Logic and Applications. 10th International Workshop, WILF 2013, Genoa, Italy, November 19\u201322, 2013. Proceedings., Vol. 8256, Springer International Publishing, Switzerland, Lecture Notes on Artificial Intelligence, 2013;\n- D. Malchiodi and A. G. B. Tettamanzi, _Predicting the Possibilistic Score of OWL Axioms through Modified Support Vector Clustering_, in H. Haddad, R. L. Wainwright e R. Chbeir (Eds.), SAC'18: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, ACM (ISBN 9781450351911), 1984\u20131991, 2018.\n\n## Install\n\nThe package can easily be installed:\n\n- via `pip`, by running `pip install mulearn` in a terminal;\n- cloning this repo.\n\nAPIs are described at https://mulearn.readthedocs.io/.\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "A python package for inducing membership functions from labeled data",
"version": "1.1.1",
"project_urls": {
"Documentation": "https://mulearn.readthedocs.io/",
"Homepage": "https://github.com/dariomalchiodi/mulearn",
"Issues": "https://github.com/dariomalchiodi/mulearn/issues"
},
"split_keywords": [
"fuzzy set",
" fuzzy membership",
" machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a83a0467effe50d32f2b7bf8146d3d7cc27121c94175ddc39560c6524645327a",
"md5": "629ad1f1613d5137bb050052b1fe202d",
"sha256": "d7b4463680c1421eeeb5b740ff53dde3d83ff89588b2ee136710edf4e4e03869"
},
"downloads": -1,
"filename": "mulearn-1.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "629ad1f1613d5137bb050052b1fe202d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 24076,
"upload_time": "2024-11-15T19:35:46",
"upload_time_iso_8601": "2024-11-15T19:35:46.978714Z",
"url": "https://files.pythonhosted.org/packages/a8/3a/0467effe50d32f2b7bf8146d3d7cc27121c94175ddc39560c6524645327a/mulearn-1.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c75a672cffb23064b099fe8e784ca15fe3443377065dc88b5676975aaf0b80ee",
"md5": "37fce70e394b7abe40c6cd9dfb88ab60",
"sha256": "cff8f3362c58f345f1d119f0504f5cc822ae7245756ed514c2b3519ccdc29003"
},
"downloads": -1,
"filename": "mulearn-1.1.1.tar.gz",
"has_sig": false,
"md5_digest": "37fce70e394b7abe40c6cd9dfb88ab60",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 514151,
"upload_time": "2024-11-15T19:35:48",
"upload_time_iso_8601": "2024-11-15T19:35:48.880243Z",
"url": "https://files.pythonhosted.org/packages/c7/5a/672cffb23064b099fe8e784ca15fe3443377065dc88b5676975aaf0b80ee/mulearn-1.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-15 19:35:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dariomalchiodi",
"github_project": "mulearn",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "anyio",
"specs": [
[
"==",
"4.6.0"
]
]
},
{
"name": "argon2-cffi",
"specs": [
[
"==",
"23.1.0"
]
]
},
{
"name": "argon2-cffi-bindings",
"specs": [
[
"==",
"21.2.0"
]
]
},
{
"name": "arrow",
"specs": [
[
"==",
"1.3.0"
]
]
},
{
"name": "asttokens",
"specs": [
[
"==",
"2.4.1"
]
]
},
{
"name": "async-lru",
"specs": [
[
"==",
"2.0.4"
]
]
},
{
"name": "attrs",
"specs": [
[
"==",
"24.2.0"
]
]
},
{
"name": "babel",
"specs": [
[
"==",
"2.16.0"
]
]
},
{
"name": "beautifulsoup4",
"specs": [
[
"==",
"4.12.3"
]
]
},
{
"name": "bleach",
"specs": [
[
"==",
"6.1.0"
]
]
},
{
"name": "certifi",
"specs": [
[
"==",
"2024.8.30"
]
]
},
{
"name": "cffi",
"specs": [
[
"==",
"1.17.1"
]
]
},
{
"name": "charset-normalizer",
"specs": [
[
"==",
"3.4.0"
]
]
},
{
"name": "comm",
"specs": [
[
"==",
"0.2.2"
]
]
},
{
"name": "contourpy",
"specs": [
[
"==",
"1.3.0"
]
]
},
{
"name": "cycler",
"specs": [
[
"==",
"0.12.1"
]
]
},
{
"name": "debugpy",
"specs": [
[
"==",
"1.8.6"
]
]
},
{
"name": "decorator",
"specs": [
[
"==",
"5.1.1"
]
]
},
{
"name": "defusedxml",
"specs": [
[
"==",
"0.7.1"
]
]
},
{
"name": "executing",
"specs": [
[
"==",
"2.1.0"
]
]
},
{
"name": "fastjsonschema",
"specs": [
[
"==",
"2.20.0"
]
]
},
{
"name": "fonttools",
"specs": [
[
"==",
"4.54.1"
]
]
},
{
"name": "fqdn",
"specs": [
[
"==",
"1.5.1"
]
]
},
{
"name": "gurobipy",
"specs": [
[
"==",
"11.0.3"
]
]
},
{
"name": "h11",
"specs": [
[
"==",
"0.14.0"
]
]
},
{
"name": "httpcore",
"specs": [
[
"==",
"1.0.6"
]
]
},
{
"name": "httpx",
"specs": [
[
"==",
"0.27.2"
]
]
},
{
"name": "idna",
"specs": [
[
"==",
"3.10"
]
]
},
{
"name": "ipykernel",
"specs": [
[
"==",
"6.29.5"
]
]
},
{
"name": "ipython",
"specs": [
[
"==",
"8.28.0"
]
]
},
{
"name": "ipywidgets",
"specs": [
[
"==",
"8.1.5"
]
]
},
{
"name": "isoduration",
"specs": [
[
"==",
"20.11.0"
]
]
},
{
"name": "jedi",
"specs": [
[
"==",
"0.19.1"
]
]
},
{
"name": "jinja2",
"specs": [
[
"==",
"3.1.4"
]
]
},
{
"name": "joblib",
"specs": [
[
"==",
"1.4.2"
]
]
},
{
"name": "json-fix",
"specs": [
[
"==",
"1.0.0"
]
]
},
{
"name": "json5",
"specs": [
[
"==",
"0.9.25"
]
]
},
{
"name": "jsonpointer",
"specs": [
[
"==",
"3.0.0"
]
]
},
{
"name": "jsonschema",
"specs": [
[
"==",
"4.23.0"
]
]
},
{
"name": "jsonschema-specifications",
"specs": [
[
"==",
"2024.10.1"
]
]
},
{
"name": "jupyter-client",
"specs": [
[
"==",
"8.6.3"
]
]
},
{
"name": "jupyter-core",
"specs": [
[
"==",
"5.7.2"
]
]
},
{
"name": "jupyter-events",
"specs": [
[
"==",
"0.10.0"
]
]
},
{
"name": "jupyter-lsp",
"specs": [
[
"==",
"2.2.5"
]
]
},
{
"name": "jupyter-server",
"specs": [
[
"==",
"2.14.2"
]
]
},
{
"name": "jupyter-server-terminals",
"specs": [
[
"==",
"0.5.3"
]
]
},
{
"name": "jupyterlab",
"specs": [
[
"==",
"4.2.5"
]
]
},
{
"name": "jupyterlab-pygments",
"specs": [
[
"==",
"0.3.0"
]
]
},
{
"name": "jupyterlab-server",
"specs": [
[
"==",
"2.27.3"
]
]
},
{
"name": "jupyterlab-widgets",
"specs": [
[
"==",
"3.0.13"
]
]
},
{
"name": "kaleido",
"specs": [
[
"==",
"0.2.1"
]
]
},
{
"name": "kiwisolver",
"specs": [
[
"==",
"1.4.7"
]
]
},
{
"name": "markupsafe",
"specs": [
[
"==",
"3.0.1"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"==",
"3.9.2"
]
]
},
{
"name": "matplotlib-inline",
"specs": [
[
"==",
"0.1.7"
]
]
},
{
"name": "mistune",
"specs": [
[
"==",
"3.0.2"
]
]
},
{
"name": "nbclient",
"specs": [
[
"==",
"0.10.0"
]
]
},
{
"name": "nbconvert",
"specs": [
[
"==",
"7.16.4"
]
]
},
{
"name": "nbformat",
"specs": [
[
"==",
"5.10.4"
]
]
},
{
"name": "nest-asyncio",
"specs": [
[
"==",
"1.6.0"
]
]
},
{
"name": "notebook",
"specs": [
[
"==",
"7.2.2"
]
]
},
{
"name": "notebook-shim",
"specs": [
[
"==",
"0.2.4"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"2.1.2"
]
]
},
{
"name": "overrides",
"specs": [
[
"==",
"7.7.0"
]
]
},
{
"name": "packaging",
"specs": [
[
"==",
"24.1"
]
]
},
{
"name": "pandas",
"specs": [
[
"==",
"2.2.3"
]
]
},
{
"name": "pandocfilters",
"specs": [
[
"==",
"1.5.1"
]
]
},
{
"name": "parso",
"specs": [
[
"==",
"0.8.4"
]
]
},
{
"name": "pexpect",
"specs": [
[
"==",
"4.9.0"
]
]
},
{
"name": "pillow",
"specs": [
[
"==",
"10.4.0"
]
]
},
{
"name": "platformdirs",
"specs": [
[
"==",
"4.3.6"
]
]
},
{
"name": "plotly",
"specs": [
[
"==",
"5.24.1"
]
]
},
{
"name": "prometheus-client",
"specs": [
[
"==",
"0.21.0"
]
]
},
{
"name": "prompt-toolkit",
"specs": [
[
"==",
"3.0.48"
]
]
},
{
"name": "psutil",
"specs": [
[
"==",
"6.0.0"
]
]
},
{
"name": "ptyprocess",
"specs": [
[
"==",
"0.7.0"
]
]
},
{
"name": "pure-eval",
"specs": [
[
"==",
"0.2.3"
]
]
},
{
"name": "pycparser",
"specs": [
[
"==",
"2.22"
]
]
},
{
"name": "pygments",
"specs": [
[
"==",
"2.18.0"
]
]
},
{
"name": "pyparsing",
"specs": [
[
"==",
"3.1.4"
]
]
},
{
"name": "python-dateutil",
"specs": [
[
"==",
"2.9.0.post0"
]
]
},
{
"name": "python-json-logger",
"specs": [
[
"==",
"2.0.7"
]
]
},
{
"name": "pytz",
"specs": [
[
"==",
"2024.2"
]
]
},
{
"name": "pyyaml",
"specs": [
[
"==",
"6.0.2"
]
]
},
{
"name": "pyzmq",
"specs": [
[
"==",
"26.2.0"
]
]
},
{
"name": "referencing",
"specs": [
[
"==",
"0.35.1"
]
]
},
{
"name": "requests",
"specs": [
[
"==",
"2.32.3"
]
]
},
{
"name": "rfc3339-validator",
"specs": [
[
"==",
"0.1.4"
]
]
},
{
"name": "rfc3986-validator",
"specs": [
[
"==",
"0.1.1"
]
]
},
{
"name": "rpds-py",
"specs": [
[
"==",
"0.20.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
"==",
"1.5.2"
]
]
},
{
"name": "scipy",
"specs": [
[
"==",
"1.14.1"
]
]
},
{
"name": "send2trash",
"specs": [
[
"==",
"1.8.3"
]
]
},
{
"name": "six",
"specs": [
[
"==",
"1.16.0"
]
]
},
{
"name": "sniffio",
"specs": [
[
"==",
"1.3.1"
]
]
},
{
"name": "soupsieve",
"specs": [
[
"==",
"2.6"
]
]
},
{
"name": "stack-data",
"specs": [
[
"==",
"0.6.3"
]
]
},
{
"name": "tenacity",
"specs": [
[
"==",
"9.0.0"
]
]
},
{
"name": "terminado",
"specs": [
[
"==",
"0.18.1"
]
]
},
{
"name": "threadpoolctl",
"specs": [
[
"==",
"3.5.0"
]
]
},
{
"name": "tinycss2",
"specs": [
[
"==",
"1.3.0"
]
]
},
{
"name": "tornado",
"specs": [
[
"==",
"6.4.1"
]
]
},
{
"name": "tqdm",
"specs": [
[
"==",
"4.66.5"
]
]
},
{
"name": "traitlets",
"specs": [
[
"==",
"5.14.3"
]
]
},
{
"name": "types-python-dateutil",
"specs": [
[
"==",
"2.9.0.20241003"
]
]
},
{
"name": "tzdata",
"specs": [
[
"==",
"2024.2"
]
]
},
{
"name": "uri-template",
"specs": [
[
"==",
"1.3.0"
]
]
},
{
"name": "urllib3",
"specs": [
[
"==",
"2.2.3"
]
]
},
{
"name": "wcwidth",
"specs": [
[
"==",
"0.2.13"
]
]
},
{
"name": "webcolors",
"specs": [
[
"==",
"24.8.0"
]
]
},
{
"name": "webencodings",
"specs": [
[
"==",
"0.5.1"
]
]
},
{
"name": "websocket-client",
"specs": [
[
"==",
"1.8.0"
]
]
},
{
"name": "widgetsnbextension",
"specs": [
[
"==",
"4.0.13"
]
]
}
],
"lcname": "mulearn"
}