Quasi-randomized (neural) networks for regression, classification and time series forecasting
Raw data
{
"_id": null,
"home_page": "https://techtonique.github.io/nnetsauce/",
"name": "nnetsauce",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "T. Moudiki",
"author_email": "thierry.moudiki@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/2d/51/2157e16bc5d95c3db9059aa7c06da05728ba93c2f225ead0c89c2e48d9aa/nnetsauce-0.29.4.tar.gz",
"platform": null,
"description": "Quasi-randomized (neural) networks for regression, classification and time series forecasting\n",
"bugtrack_url": null,
"license": "BSD Clause Clear",
"summary": "Quasi-randomized (neural) networks",
"version": "0.29.4",
"project_urls": {
"Download": "https://github.com/Techtonique/nnetsauce",
"Homepage": "https://techtonique.github.io/nnetsauce/"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2a748a383a4251fcc64077438372c68d5d6f109f41a22a526bb7c21182d55ab7",
"md5": "b48a289b9d74f212518a483c70c04b5b",
"sha256": "31c795a7a6dc53640818fbdd3d9847ff1ba3f057082ac0e6a1fc8e0899d43133"
},
"downloads": -1,
"filename": "nnetsauce-0.29.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b48a289b9d74f212518a483c70c04b5b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 180095,
"upload_time": "2024-12-22T18:51:57",
"upload_time_iso_8601": "2024-12-22T18:51:57.623704Z",
"url": "https://files.pythonhosted.org/packages/2a/74/8a383a4251fcc64077438372c68d5d6f109f41a22a526bb7c21182d55ab7/nnetsauce-0.29.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2d512157e16bc5d95c3db9059aa7c06da05728ba93c2f225ead0c89c2e48d9aa",
"md5": "b63743109a3c2b3cc69ed48c7651507f",
"sha256": "858e89057f9386c2740c38d44101d7a29df92cfc45bc27fc330f2889467e45f8"
},
"downloads": -1,
"filename": "nnetsauce-0.29.4.tar.gz",
"has_sig": false,
"md5_digest": "b63743109a3c2b3cc69ed48c7651507f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 127535,
"upload_time": "2024-12-22T18:51:59",
"upload_time_iso_8601": "2024-12-22T18:51:59.073663Z",
"url": "https://files.pythonhosted.org/packages/2d/51/2157e16bc5d95c3db9059aa7c06da05728ba93c2f225ead0c89c2e48d9aa/nnetsauce-0.29.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-22 18:51:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Techtonique",
"github_project": "nnetsauce",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "joblib",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "requests",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "scikit-learn",
"specs": []
},
{
"name": "statsmodels",
"specs": []
},
{
"name": "threadpoolctl",
"specs": []
},
{
"name": "tqdm",
"specs": []
}
],
"lcname": "nnetsauce"
}