otxreid


Nameotxreid JSON
Version 0.3.1 PyPI version JSON
download
home_pagehttps://github.com/openvinotoolkit/deep-object-reid
SummaryA library for deep learning object re-ID and classification in PyTorch
upload_time2023-01-02 06:16:37
maintainer
docs_urlNone
authorKaiyang Zhou, Intel Corporation
requires_python
licenseApache-2.0
keywords object re-identification image classification deep learning computer vision
VCS
bugtrack_url
requirements numpy Pillow six scipy opencv-python matplotlib tb-nightly future yacs gdown scikit-learn terminaltables pytorchcv torch-lr-finder onnx torchvision torch optuna timm addict randaugment ptflops sklearn
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Deep Object Reid
================

Deep Object Reid is a library for deep-learning image classification and object re-identification, written in `PyTorch <https://pytorch.org/>`_.
It is a part of `OpenVINO™ Training Extensions <https://github.com/opencv/openvino_training_extensions>`_.

The project is based on Kaiyang Zhou's `Torchreid <https://github.com/KaiyangZhou/deep-person-reid>`_ project.

Its features:

- multi-GPU training
- support both image- and video-reid
- end-to-end training and evaluation
- incredibly easy preparation of reid datasets
- multi-dataset training
- cross-dataset evaluation
- standard protocol used by most research papers
- highly extensible (easy to add models, datasets, training methods, etc.)
- implementations of state-of-the-art deep reid models
- access to pretrained reid models
- advanced training techniques
- visualization tools (tensorboard, ranks, etc.)


Code: https://github.com/openvinotoolkit/deep-object-reid

How-to instructions: https://github.com/openvinotoolkit/deep-object-reid/blob/ote/docs/user_guide.rst

Model zoo by Kaiyang Zhou: https://github.com/openvinotoolkit/deep-object-reid/blob/ote/docs/MODEL_ZOO.md

Original tech report by Kaiyang Zhou and Tao Xiang: https://arxiv.org/abs/1910.10093.

Also you can find some other research projects that are built on top of Torchreid `here <https://github.com/KaiyangZhou/deep-person-reid/tree/master/projects>`_.


What's new
------------
- [May 2020] Added the person attribute recognition code used in `Omni-Scale Feature Learning for Person Re-Identification (ICCV'19) <https://arxiv.org/abs/1905.00953>`_. See ``projects/attribute_recognition/``.
- [May 2020] ``1.2.1``: Added a simple API for feature extraction (``torchreid/utils/feature_extractor.py``). See the `documentation <https://kaiyangzhou.github.io/deep-person-reid/user_guide.html>`_ for the instruction.
- [Apr 2020] Code for reproducing the experiments of `deep mutual learning <https://zpascal.net/cvpr2018/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf>`_ in the `OSNet paper <https://arxiv.org/pdf/1905.00953v6.pdf>`__ (Supp. B) has been released at ``projects/DML``.
- [Apr 2020] Upgraded to ``1.2.0``. The engine class has been made more model-agnostic to improve extensibility. See `Engine <torchreid/engine/engine.py>`_ and `ImageSoftmaxEngine <torchreid/engine/image/softmax.py>`_ for more details. Credit to `Dassl.pytorch <https://github.com/KaiyangZhou/Dassl.pytorch>`_.
- [Dec 2019] Our `OSNet paper <https://arxiv.org/pdf/1905.00953v6.pdf>`_ has been updated, with additional experiments (in section B of the supplementary) showing some useful techniques for improving OSNet's performance in practice.
- [Nov 2019] ``ImageDataManager`` can load training data from target datasets by setting ``load_train_targets=True``, and the train-loader can be accessed with ``train_loader_t = datamanager.train_loader_t``. This feature is useful for domain adaptation research.


Installation
---------------

Make sure `conda <https://www.anaconda.com/distribution/>`_ is installed.


.. code-block:: bash

    # cd to your preferred directory and clone this repo
    git clone https://github.com/KaiyangZhou/deep-person-reid.git

    # create environment
    cd deep-person-reid/
    conda create --name torchreid python=3.7
    conda activate torchreid

    # install dependencies
    # make sure `which python` and `which pip` point to the correct path
    pip install -r requirements.txt

    # install torch and torchvision (select the proper cuda version to suit your machine)
    conda install pytorch torchvision cudatoolkit=9.0 -c pytorch

    # install torchreid (don't need to re-build it if you modify the source code)
    python setup.py develop


Get started: 30 seconds to Torchreid
-------------------------------------
1. Import ``torchreid``

.. code-block:: python
    
    import torchreid

2. Load data manager

.. code-block:: python
    
    datamanager = torchreid.data.ImageDataManager(
        root='reid-data',
        sources='market1501',
        targets='market1501',
        height=256,
        width=128,
        batch_size_train=32,
        batch_size_test=100,
        transforms=['random_flip', 'random_crop']
    )

3 Build model, optimizer and lr_scheduler

.. code-block:: python
    
    model = torchreid.models.build_model(
        name='resnet50',
        num_classes=datamanager.num_train_pids,
        loss='softmax',
        pretrained=True
    )

    model = model.cuda()

    optimizer = torchreid.optim.build_optimizer(
        model,
        optim='adam',
        lr=0.0003
    )

    scheduler = torchreid.optim.build_lr_scheduler(
        optimizer,
        lr_scheduler='single_step',
        stepsize=20
    )

4. Build engine

.. code-block:: python
    
    engine = torchreid.engine.ImageSoftmaxEngine(
        datamanager,
        model,
        optimizer=optimizer,
        scheduler=scheduler,
        label_smooth=True
    )

5. Run training and test

.. code-block:: python
    
    engine.run(
        save_dir='log/resnet50',
        max_epoch=60,
        eval_freq=10,
        print_freq=10,
        test_only=False
    )


A unified interface
-----------------------
In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point.

Below we provide an example to train and test `OSNet (Zhou et al. ICCV'19) <https://arxiv.org/abs/1905.00953>`_. Assume :code:`PATH_TO_DATA` is the directory containing reid datasets. The environmental variable :code:`CUDA_VISIBLE_DEVICES` is omitted, which you need to specify if you have a pool of gpus and want to use a specific set of them.

Conventional setting
^^^^^^^^^^^^^^^^^^^^^

To train OSNet on Market1501, do

.. code-block:: bash

    python scripts/main.py \
    --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
    --transforms random_flip random_erase \
    --root $PATH_TO_DATA


The config file sets Market1501 as the default dataset. If you wanna use DukeMTMC-reID, do

.. code-block:: bash

    python scripts/main.py \
    --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
    -s dukemtmcreid \
    -t dukemtmcreid \
    --transforms random_flip random_erase \
    --root $PATH_TO_DATA \
    data.save_dir log/osnet_x1_0_dukemtmcreid_softmax_cosinelr

The code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as "log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250". Under the same folder, you can find the `tensorboard <https://pytorch.org/docs/stable/tensorboard.html>`_ file. To visualize the learning curves using tensorboard, you can run :code:`tensorboard --logdir=log/osnet_x1_0_market1501_softmax_cosinelr` in the terminal and visit :code:`http://localhost:6006/` in your web browser.

Evaluation is automatically performed at the end of training. To run the test again using the trained model, do

.. code-block:: bash

    python scripts/main.py \
    --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
    --root $PATH_TO_DATA \
    model.load_weights log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250 \
    test.evaluate True


Cross-domain setting
^^^^^^^^^^^^^^^^^^^^^

Suppose you wanna train OSNet on DukeMTMC-reID and test its performance on Market1501, you can do

.. code-block:: bash

    python scripts/main.py \
    --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad.yaml \
    -s dukemtmcreid \
    -t market1501 \
    --transforms random_flip color_jitter \
    --root $PATH_TO_DATA

Here we only test the cross-domain performance. However, if you also want to test the performance on the source dataset, i.e. DukeMTMC-reID, you can set :code:`-t dukemtmcreid market1501`, which will evaluate the model on the two datasets separately.

Different from the same-domain setting, here we replace :code:`random_erase` with :code:`color_jitter`. This can improve the generalization performance on the unseen target dataset.

Pretrained models are available in the `Model Zoo <https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html>`_.


Datasets
--------

Image-reid datasets
^^^^^^^^^^^^^^^^^^^^^
- `Market1501 <https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf>`_
- `CUHK03 <https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf>`_
- `DukeMTMC-reID <https://arxiv.org/abs/1701.07717>`_
- `MSMT17 <https://arxiv.org/abs/1711.08565>`_
- `VIPeR <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.7285&rep=rep1&type=pdf>`_
- `GRID <http://www.eecs.qmul.ac.uk/~txiang/publications/LoyXiangGong_cvpr_2009.pdf>`_
- `CUHK01 <http://www.ee.cuhk.edu.hk/~xgwang/papers/liZWaccv12.pdf>`_
- `SenseReID <http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Spindle_Net_Person_CVPR_2017_paper.pdf>`_
- `QMUL-iLIDS <http://www.eecs.qmul.ac.uk/~sgg/papers/ZhengGongXiang_BMVC09.pdf>`_
- `PRID <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_

Video-reid datasets
^^^^^^^^^^^^^^^^^^^^^^^
- `MARS <http://www.liangzheng.org/1320.pdf>`_
- `iLIDS-VID <https://www.eecs.qmul.ac.uk/~sgg/papers/WangEtAl_ECCV14.pdf>`_
- `PRID2011 <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_
- `DukeMTMC-VideoReID <http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf>`_


Models
-------

ImageNet classification models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- `ResNet <https://arxiv.org/abs/1512.03385>`_
- `ResNeXt <https://arxiv.org/abs/1611.05431>`_
- `SENet <https://arxiv.org/abs/1709.01507>`_
- `DenseNet <https://arxiv.org/abs/1608.06993>`_
- `Inception-ResNet-V2 <https://arxiv.org/abs/1602.07261>`_
- `Inception-V4 <https://arxiv.org/abs/1602.07261>`_
- `Xception <https://arxiv.org/abs/1610.02357>`_
- `IBN-Net <https://arxiv.org/abs/1807.09441>`_

Lightweight models
^^^^^^^^^^^^^^^^^^^
- `NASNet <https://arxiv.org/abs/1707.07012>`_
- `MobileNetV2 <https://arxiv.org/abs/1801.04381>`_
- `ShuffleNet <https://arxiv.org/abs/1707.01083>`_
- `ShuffleNetV2 <https://arxiv.org/abs/1807.11164>`_
- `SqueezeNet <https://arxiv.org/abs/1602.07360>`_

ReID-specific models
^^^^^^^^^^^^^^^^^^^^^^
- `MuDeep <https://arxiv.org/abs/1709.05165>`_
- `ResNet-mid <https://arxiv.org/abs/1711.08106>`_
- `HACNN <https://arxiv.org/abs/1802.08122>`_
- `PCB <https://arxiv.org/abs/1711.09349>`_
- `MLFN <https://arxiv.org/abs/1803.09132>`_
- `OSNet <https://arxiv.org/abs/1905.00953>`_
- `OSNet-AIN <https://arxiv.org/abs/1910.06827>`_


Useful links
-------------
- `OSNet-IBN1-Lite (test-only code with lite docker container) <https://github.com/RodMech/OSNet-IBN1-Lite>`_
- `Deep Learning for Person Re-identification: A Survey and Outlook <https://github.com/mangye16/ReID-Survey>`_


Citation
---------
If you find this code useful to your research, please cite the following papers.

.. code-block:: bash

    @article{torchreid,
      title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch},
      author={Zhou, Kaiyang and Xiang, Tao},
      journal={arXiv preprint arXiv:1910.10093},
      year={2019}
    }
    
    @inproceedings{zhou2019osnet,
      title={Omni-Scale Feature Learning for Person Re-Identification},
      author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
      booktitle={ICCV},
      year={2019}
    }

    @article{zhou2019learning,
      title={Learning Generalisable Omni-Scale Representations for Person Re-Identification},
      author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
      journal={arXiv preprint arXiv:1910.06827},
      year={2019}
    }

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/openvinotoolkit/deep-object-reid",
    "name": "otxreid",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Object Re-Identification,Image Classification,Deep Learning,Computer Vision",
    "author": "Kaiyang Zhou, Intel Corporation",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/7f/ca/2728a1b571a4fc07938201839b26493ff0553f8cea7c6258958df2a77a0a/otxreid-0.3.1.tar.gz",
    "platform": null,
    "description": "Deep Object Reid\n================\n\nDeep Object Reid is a library for deep-learning image classification and object re-identification, written in `PyTorch <https://pytorch.org/>`_.\nIt is a part of `OpenVINO\u2122 Training Extensions <https://github.com/opencv/openvino_training_extensions>`_.\n\nThe project is based on Kaiyang Zhou's `Torchreid <https://github.com/KaiyangZhou/deep-person-reid>`_ project.\n\nIts features:\n\n- multi-GPU training\n- support both image- and video-reid\n- end-to-end training and evaluation\n- incredibly easy preparation of reid datasets\n- multi-dataset training\n- cross-dataset evaluation\n- standard protocol used by most research papers\n- highly extensible (easy to add models, datasets, training methods, etc.)\n- implementations of state-of-the-art deep reid models\n- access to pretrained reid models\n- advanced training techniques\n- visualization tools (tensorboard, ranks, etc.)\n\n\nCode: https://github.com/openvinotoolkit/deep-object-reid\n\nHow-to instructions: https://github.com/openvinotoolkit/deep-object-reid/blob/ote/docs/user_guide.rst\n\nModel zoo by Kaiyang Zhou: https://github.com/openvinotoolkit/deep-object-reid/blob/ote/docs/MODEL_ZOO.md\n\nOriginal tech report by Kaiyang Zhou and Tao Xiang: https://arxiv.org/abs/1910.10093.\n\nAlso you can find some other research projects that are built on top of Torchreid `here <https://github.com/KaiyangZhou/deep-person-reid/tree/master/projects>`_.\n\n\nWhat's new\n------------\n- [May 2020] Added the person attribute recognition code used in `Omni-Scale Feature Learning for Person Re-Identification (ICCV'19) <https://arxiv.org/abs/1905.00953>`_. See ``projects/attribute_recognition/``.\n- [May 2020] ``1.2.1``: Added a simple API for feature extraction (``torchreid/utils/feature_extractor.py``). See the `documentation <https://kaiyangzhou.github.io/deep-person-reid/user_guide.html>`_ for the instruction.\n- [Apr 2020] Code for reproducing the experiments of `deep mutual learning <https://zpascal.net/cvpr2018/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf>`_ in the `OSNet paper <https://arxiv.org/pdf/1905.00953v6.pdf>`__ (Supp. B) has been released at ``projects/DML``.\n- [Apr 2020] Upgraded to ``1.2.0``. The engine class has been made more model-agnostic to improve extensibility. See `Engine <torchreid/engine/engine.py>`_ and `ImageSoftmaxEngine <torchreid/engine/image/softmax.py>`_ for more details. Credit to `Dassl.pytorch <https://github.com/KaiyangZhou/Dassl.pytorch>`_.\n- [Dec 2019] Our `OSNet paper <https://arxiv.org/pdf/1905.00953v6.pdf>`_ has been updated, with additional experiments (in section B of the supplementary) showing some useful techniques for improving OSNet's performance in practice.\n- [Nov 2019] ``ImageDataManager`` can load training data from target datasets by setting ``load_train_targets=True``, and the train-loader can be accessed with ``train_loader_t = datamanager.train_loader_t``. This feature is useful for domain adaptation research.\n\n\nInstallation\n---------------\n\nMake sure `conda <https://www.anaconda.com/distribution/>`_ is installed.\n\n\n.. code-block:: bash\n\n    # cd to your preferred directory and clone this repo\n    git clone https://github.com/KaiyangZhou/deep-person-reid.git\n\n    # create environment\n    cd deep-person-reid/\n    conda create --name torchreid python=3.7\n    conda activate torchreid\n\n    # install dependencies\n    # make sure `which python` and `which pip` point to the correct path\n    pip install -r requirements.txt\n\n    # install torch and torchvision (select the proper cuda version to suit your machine)\n    conda install pytorch torchvision cudatoolkit=9.0 -c pytorch\n\n    # install torchreid (don't need to re-build it if you modify the source code)\n    python setup.py develop\n\n\nGet started: 30 seconds to Torchreid\n-------------------------------------\n1. Import ``torchreid``\n\n.. code-block:: python\n    \n    import torchreid\n\n2. Load data manager\n\n.. code-block:: python\n    \n    datamanager = torchreid.data.ImageDataManager(\n        root='reid-data',\n        sources='market1501',\n        targets='market1501',\n        height=256,\n        width=128,\n        batch_size_train=32,\n        batch_size_test=100,\n        transforms=['random_flip', 'random_crop']\n    )\n\n3 Build model, optimizer and lr_scheduler\n\n.. code-block:: python\n    \n    model = torchreid.models.build_model(\n        name='resnet50',\n        num_classes=datamanager.num_train_pids,\n        loss='softmax',\n        pretrained=True\n    )\n\n    model = model.cuda()\n\n    optimizer = torchreid.optim.build_optimizer(\n        model,\n        optim='adam',\n        lr=0.0003\n    )\n\n    scheduler = torchreid.optim.build_lr_scheduler(\n        optimizer,\n        lr_scheduler='single_step',\n        stepsize=20\n    )\n\n4. Build engine\n\n.. code-block:: python\n    \n    engine = torchreid.engine.ImageSoftmaxEngine(\n        datamanager,\n        model,\n        optimizer=optimizer,\n        scheduler=scheduler,\n        label_smooth=True\n    )\n\n5. Run training and test\n\n.. code-block:: python\n    \n    engine.run(\n        save_dir='log/resnet50',\n        max_epoch=60,\n        eval_freq=10,\n        print_freq=10,\n        test_only=False\n    )\n\n\nA unified interface\n-----------------------\nIn \"deep-person-reid/scripts/\", we provide a unified interface to train and test a model. See \"scripts/main.py\" and \"scripts/default_config.py\" for more details. The folder \"configs/\" contains some predefined configs which you can use as a starting point.\n\nBelow we provide an example to train and test `OSNet (Zhou et al. ICCV'19) <https://arxiv.org/abs/1905.00953>`_. Assume :code:`PATH_TO_DATA` is the directory containing reid datasets. The environmental variable :code:`CUDA_VISIBLE_DEVICES` is omitted, which you need to specify if you have a pool of gpus and want to use a specific set of them.\n\nConventional setting\n^^^^^^^^^^^^^^^^^^^^^\n\nTo train OSNet on Market1501, do\n\n.. code-block:: bash\n\n    python scripts/main.py \\\n    --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \\\n    --transforms random_flip random_erase \\\n    --root $PATH_TO_DATA\n\n\nThe config file sets Market1501 as the default dataset. If you wanna use DukeMTMC-reID, do\n\n.. code-block:: bash\n\n    python scripts/main.py \\\n    --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \\\n    -s dukemtmcreid \\\n    -t dukemtmcreid \\\n    --transforms random_flip random_erase \\\n    --root $PATH_TO_DATA \\\n    data.save_dir log/osnet_x1_0_dukemtmcreid_softmax_cosinelr\n\nThe code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as \"log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250\". Under the same folder, you can find the `tensorboard <https://pytorch.org/docs/stable/tensorboard.html>`_ file. To visualize the learning curves using tensorboard, you can run :code:`tensorboard --logdir=log/osnet_x1_0_market1501_softmax_cosinelr` in the terminal and visit :code:`http://localhost:6006/` in your web browser.\n\nEvaluation is automatically performed at the end of training. To run the test again using the trained model, do\n\n.. code-block:: bash\n\n    python scripts/main.py \\\n    --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \\\n    --root $PATH_TO_DATA \\\n    model.load_weights log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250 \\\n    test.evaluate True\n\n\nCross-domain setting\n^^^^^^^^^^^^^^^^^^^^^\n\nSuppose you wanna train OSNet on DukeMTMC-reID and test its performance on Market1501, you can do\n\n.. code-block:: bash\n\n    python scripts/main.py \\\n    --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad.yaml \\\n    -s dukemtmcreid \\\n    -t market1501 \\\n    --transforms random_flip color_jitter \\\n    --root $PATH_TO_DATA\n\nHere we only test the cross-domain performance. However, if you also want to test the performance on the source dataset, i.e. DukeMTMC-reID, you can set :code:`-t dukemtmcreid market1501`, which will evaluate the model on the two datasets separately.\n\nDifferent from the same-domain setting, here we replace :code:`random_erase` with :code:`color_jitter`. This can improve the generalization performance on the unseen target dataset.\n\nPretrained models are available in the `Model Zoo <https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html>`_.\n\n\nDatasets\n--------\n\nImage-reid datasets\n^^^^^^^^^^^^^^^^^^^^^\n- `Market1501 <https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf>`_\n- `CUHK03 <https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf>`_\n- `DukeMTMC-reID <https://arxiv.org/abs/1701.07717>`_\n- `MSMT17 <https://arxiv.org/abs/1711.08565>`_\n- `VIPeR <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.7285&rep=rep1&type=pdf>`_\n- `GRID <http://www.eecs.qmul.ac.uk/~txiang/publications/LoyXiangGong_cvpr_2009.pdf>`_\n- `CUHK01 <http://www.ee.cuhk.edu.hk/~xgwang/papers/liZWaccv12.pdf>`_\n- `SenseReID <http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Spindle_Net_Person_CVPR_2017_paper.pdf>`_\n- `QMUL-iLIDS <http://www.eecs.qmul.ac.uk/~sgg/papers/ZhengGongXiang_BMVC09.pdf>`_\n- `PRID <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_\n\nVideo-reid datasets\n^^^^^^^^^^^^^^^^^^^^^^^\n- `MARS <http://www.liangzheng.org/1320.pdf>`_\n- `iLIDS-VID <https://www.eecs.qmul.ac.uk/~sgg/papers/WangEtAl_ECCV14.pdf>`_\n- `PRID2011 <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_\n- `DukeMTMC-VideoReID <http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf>`_\n\n\nModels\n-------\n\nImageNet classification models\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n- `ResNet <https://arxiv.org/abs/1512.03385>`_\n- `ResNeXt <https://arxiv.org/abs/1611.05431>`_\n- `SENet <https://arxiv.org/abs/1709.01507>`_\n- `DenseNet <https://arxiv.org/abs/1608.06993>`_\n- `Inception-ResNet-V2 <https://arxiv.org/abs/1602.07261>`_\n- `Inception-V4 <https://arxiv.org/abs/1602.07261>`_\n- `Xception <https://arxiv.org/abs/1610.02357>`_\n- `IBN-Net <https://arxiv.org/abs/1807.09441>`_\n\nLightweight models\n^^^^^^^^^^^^^^^^^^^\n- `NASNet <https://arxiv.org/abs/1707.07012>`_\n- `MobileNetV2 <https://arxiv.org/abs/1801.04381>`_\n- `ShuffleNet <https://arxiv.org/abs/1707.01083>`_\n- `ShuffleNetV2 <https://arxiv.org/abs/1807.11164>`_\n- `SqueezeNet <https://arxiv.org/abs/1602.07360>`_\n\nReID-specific models\n^^^^^^^^^^^^^^^^^^^^^^\n- `MuDeep <https://arxiv.org/abs/1709.05165>`_\n- `ResNet-mid <https://arxiv.org/abs/1711.08106>`_\n- `HACNN <https://arxiv.org/abs/1802.08122>`_\n- `PCB <https://arxiv.org/abs/1711.09349>`_\n- `MLFN <https://arxiv.org/abs/1803.09132>`_\n- `OSNet <https://arxiv.org/abs/1905.00953>`_\n- `OSNet-AIN <https://arxiv.org/abs/1910.06827>`_\n\n\nUseful links\n-------------\n- `OSNet-IBN1-Lite (test-only code with lite docker container) <https://github.com/RodMech/OSNet-IBN1-Lite>`_\n- `Deep Learning for Person Re-identification: A Survey and Outlook <https://github.com/mangye16/ReID-Survey>`_\n\n\nCitation\n---------\nIf you find this code useful to your research, please cite the following papers.\n\n.. code-block:: bash\n\n    @article{torchreid,\n      title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch},\n      author={Zhou, Kaiyang and Xiang, Tao},\n      journal={arXiv preprint arXiv:1910.10093},\n      year={2019}\n    }\n    \n    @inproceedings{zhou2019osnet,\n      title={Omni-Scale Feature Learning for Person Re-Identification},\n      author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},\n      booktitle={ICCV},\n      year={2019}\n    }\n\n    @article{zhou2019learning,\n      title={Learning Generalisable Omni-Scale Representations for Person Re-Identification},\n      author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},\n      journal={arXiv preprint arXiv:1910.06827},\n      year={2019}\n    }\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "A library for deep learning object re-ID and classification in PyTorch",
    "version": "0.3.1",
    "split_keywords": [
        "object re-identification",
        "image classification",
        "deep learning",
        "computer vision"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "231cb3257aaf62104793042c1c493ee4",
                "sha256": "9cca7940c0af8161c10c64812754fac878c09ed4dd081047c2d8266cc93844ac"
            },
            "downloads": -1,
            "filename": "otxreid-0.3.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "231cb3257aaf62104793042c1c493ee4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 163545,
            "upload_time": "2023-01-02T06:16:34",
            "upload_time_iso_8601": "2023-01-02T06:16:34.667961Z",
            "url": "https://files.pythonhosted.org/packages/6b/a8/0fb83c2e0812b2a823456e65b77f9cf98a10d3c99e6359fe1e0f6dd06ab1/otxreid-0.3.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "ddd17f1666728b1b5f38c5d09e953058",
                "sha256": "9899411ad0879e433464ce43f4d427210db71238a245637060afe9327a885866"
            },
            "downloads": -1,
            "filename": "otxreid-0.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "ddd17f1666728b1b5f38c5d09e953058",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 128106,
            "upload_time": "2023-01-02T06:16:37",
            "upload_time_iso_8601": "2023-01-02T06:16:37.053754Z",
            "url": "https://files.pythonhosted.org/packages/7f/ca/2728a1b571a4fc07938201839b26493ff0553f8cea7c6258958df2a77a0a/otxreid-0.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-02 06:16:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "openvinotoolkit",
    "github_project": "deep-object-reid",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "Pillow",
            "specs": []
        },
        {
            "name": "six",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.5.4"
                ]
            ]
        },
        {
            "name": "opencv-python",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "tb-nightly",
            "specs": []
        },
        {
            "name": "future",
            "specs": []
        },
        {
            "name": "yacs",
            "specs": []
        },
        {
            "name": "gdown",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "terminaltables",
            "specs": []
        },
        {
            "name": "pytorchcv",
            "specs": []
        },
        {
            "name": "torch-lr-finder",
            "specs": [
                [
                    "==",
                    "0.2.1"
                ]
            ]
        },
        {
            "name": "onnx",
            "specs": []
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    "==",
                    "0.9.*"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    "==",
                    "1.8.*"
                ]
            ]
        },
        {
            "name": "optuna",
            "specs": [
                [
                    "==",
                    "2.10.1"
                ]
            ]
        },
        {
            "name": "timm",
            "specs": [
                [
                    ">=",
                    "0.6.5"
                ]
            ]
        },
        {
            "name": "addict",
            "specs": []
        },
        {
            "name": "randaugment",
            "specs": []
        },
        {
            "name": "ptflops",
            "specs": []
        },
        {
            "name": "sklearn",
            "specs": []
        }
    ],
    "lcname": "otxreid"
}
        
Elapsed time: 0.03100s