oussama_datalib


Nameoussama_datalib JSON
Version 0.2.2 PyPI version JSON
download
home_pagehttps://github.com/elayeboussama/oussama_datalib
SummarySimplified data manipulation and analysis tools
upload_time2024-12-22 18:10:47
maintainerNone
docs_urlNone
authorOussama ELAYEB
requires_python<4.0,>=3.10
licenseMIT
keywords data analysis machine learning visualization
VCS
bugtrack_url
requirements numpy pandas matplotlib seaborn scikit-learn scipy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DataLib

[![Test](https://github.com/elayeboussama/oussama_datalib/actions/workflows/test.yml/badge.svg)](https://github.com/elayeboussama/oussama_datalib/actions/workflows/test.yml)

A simplified Python library for data manipulation, analysis, and machine learning.

## Features

- Data Processing: Loading, cleaning, and preprocessing functions
- Analysis: Linear regression, polynomial regression, and multiple regression
- Statistics: Basic statistical calculations
- Visualization: Various plotting functions using matplotlib and seaborn
- Machine Learning:
  - Supervised Learning: KNN, Decision Trees, Random Forests
  - Unsupervised Learning: K-means, PCA, Gaussian Mixture
  - Reinforcement Learning: Basic Q-Learning and SARSA

## Installation

You can install the package directly from PyPI:

```bash
pip install oussama-datalib
```
Or using Poetry:

```bash
poetry add oussama-datalib
```
 

## Usage

Here's a simple example of using DataLib:

```python
from src.datalib.data_processing import load_csv, fill_missing_values
from src.datalib.visualization import plot_histogram
import pandas as pd

# Load data
df = pd.read_csv('your_data.csv')

# Fill missing values
df = fill_missing_values(df, 'column_name', method='mean')

# Create visualization
plot_histogram(df, 'column_name')
```

For a complete example, check out `example/execution_example.py`. To run it:

```bash
poetry run python example/execution_example.py
```

## Testing

To run the tests:

```bash
poetry run pytest
```

## Documentation

To build the documentation:

```bash
poetry run sphinx-build -b html docs docs/build
```

Then open `docs/build/index.html` in your browser.

## Project Structure

```
datalib/
├── src/
│ └── datalib/
│     ├── init.py
│     ├── analysis.py
│     ├── data_processing.py
│     ├── reinforcement.py
│     ├── statistics.py
│     ├── supervised.py
│     ├── unsupervised.py
│     └── visualization.py
├── tests/
│   ├── conftest.py
│   ├── test_analysis.py
│   ├── test_data_processing.py
│   ├── test_reinforcement.py
│   ├── test_statistics.py
│   ├── test_supervised.py
│   ├── test_unsupervised.py
│   └── test_visualization.py
├── docs/
│   ├── conf.py
│   ├── index.rst
│   ├── modules.rst
│   └── build/
│   ├── html/
│   ├── doctrees/
│   └── static/
├── example/
│   └── execution_example.py
├── .gitignore
├── LICENSE
├── README.md
├── pyproject.toml
├── setup.py
└── .pre-commit-config.yaml
```

## Dependencies

- Python ≥ 3.10
- NumPy ≥ 1.21.0
- Pandas ≥ 2.2.3
- Matplotlib ≥ 3.4.0
- Seaborn ≥ 0.11.0
- Scikit-learn ≥ 1.0.0
- SciPy ≥ 1.7.0

## License

MIT License

## Author

Oussama ELAYEB (elayeb.oussama2020@gmail.com)

## Development Setup

1. Clone the repository
2. Install dependencies:
```bash
poetry install
```

3. Install pre-commit hooks:
```bash
poetry run pre-commit install
```

4. Run tests:
```bash
poetry run pytest
```

5. Run linting:
```bash
poetry run flake8
poetry run black .
poetry run isort .
```


## Contributing

Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.

1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request

## Contact

For questions, feedback, or support:
- Email: elayeb.oussama2020@gmail.com
- GitHub Issues: [Create an issue](https://github.com/elayeboussama/oussama_datalib/issues)

## Acknowledgments

- Thanks to the Python community for the amazing libraries that made this project possible
- Special thanks to all contributors who help improve this library

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/elayeboussama/oussama_datalib",
    "name": "oussama_datalib",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "data, analysis, machine learning, visualization",
    "author": "Oussama ELAYEB",
    "author_email": "elayeb.oussama2020@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/30/09/cae054bcd7d560e9f0f6b768054775a501f4f50af3a01269b0606b7834cd/oussama_datalib-0.2.2.tar.gz",
    "platform": null,
    "description": "# DataLib\n\n[![Test](https://github.com/elayeboussama/oussama_datalib/actions/workflows/test.yml/badge.svg)](https://github.com/elayeboussama/oussama_datalib/actions/workflows/test.yml)\n\nA simplified Python library for data manipulation, analysis, and machine learning.\n\n## Features\n\n- Data Processing: Loading, cleaning, and preprocessing functions\n- Analysis: Linear regression, polynomial regression, and multiple regression\n- Statistics: Basic statistical calculations\n- Visualization: Various plotting functions using matplotlib and seaborn\n- Machine Learning:\n  - Supervised Learning: KNN, Decision Trees, Random Forests\n  - Unsupervised Learning: K-means, PCA, Gaussian Mixture\n  - Reinforcement Learning: Basic Q-Learning and SARSA\n\n## Installation\n\nYou can install the package directly from PyPI:\n\n```bash\npip install oussama-datalib\n```\nOr using Poetry:\n\n```bash\npoetry add oussama-datalib\n```\n \n\n## Usage\n\nHere's a simple example of using DataLib:\n\n```python\nfrom src.datalib.data_processing import load_csv, fill_missing_values\nfrom src.datalib.visualization import plot_histogram\nimport pandas as pd\n\n# Load data\ndf = pd.read_csv('your_data.csv')\n\n# Fill missing values\ndf = fill_missing_values(df, 'column_name', method='mean')\n\n# Create visualization\nplot_histogram(df, 'column_name')\n```\n\nFor a complete example, check out `example/execution_example.py`. To run it:\n\n```bash\npoetry run python example/execution_example.py\n```\n\n## Testing\n\nTo run the tests:\n\n```bash\npoetry run pytest\n```\n\n## Documentation\n\nTo build the documentation:\n\n```bash\npoetry run sphinx-build -b html docs docs/build\n```\n\nThen open `docs/build/index.html` in your browser.\n\n## Project Structure\n\n```\ndatalib/\n\u251c\u2500\u2500 src/\n\u2502 \u2514\u2500\u2500 datalib/\n\u2502     \u251c\u2500\u2500 init.py\n\u2502     \u251c\u2500\u2500 analysis.py\n\u2502     \u251c\u2500\u2500 data_processing.py\n\u2502     \u251c\u2500\u2500 reinforcement.py\n\u2502     \u251c\u2500\u2500 statistics.py\n\u2502     \u251c\u2500\u2500 supervised.py\n\u2502     \u251c\u2500\u2500 unsupervised.py\n\u2502     \u2514\u2500\u2500 visualization.py\n\u251c\u2500\u2500 tests/\n\u2502   \u251c\u2500\u2500 conftest.py\n\u2502   \u251c\u2500\u2500 test_analysis.py\n\u2502   \u251c\u2500\u2500 test_data_processing.py\n\u2502   \u251c\u2500\u2500 test_reinforcement.py\n\u2502   \u251c\u2500\u2500 test_statistics.py\n\u2502   \u251c\u2500\u2500 test_supervised.py\n\u2502   \u251c\u2500\u2500 test_unsupervised.py\n\u2502   \u2514\u2500\u2500 test_visualization.py\n\u251c\u2500\u2500 docs/\n\u2502   \u251c\u2500\u2500 conf.py\n\u2502   \u251c\u2500\u2500 index.rst\n\u2502   \u251c\u2500\u2500 modules.rst\n\u2502   \u2514\u2500\u2500 build/\n\u2502   \u251c\u2500\u2500 html/\n\u2502   \u251c\u2500\u2500 doctrees/\n\u2502   \u2514\u2500\u2500 static/\n\u251c\u2500\u2500 example/\n\u2502   \u2514\u2500\u2500 execution_example.py\n\u251c\u2500\u2500 .gitignore\n\u251c\u2500\u2500 LICENSE\n\u251c\u2500\u2500 README.md\n\u251c\u2500\u2500 pyproject.toml\n\u251c\u2500\u2500 setup.py\n\u2514\u2500\u2500 .pre-commit-config.yaml\n```\n\n## Dependencies\n\n- Python \u2265 3.10\n- NumPy \u2265 1.21.0\n- Pandas \u2265 2.2.3\n- Matplotlib \u2265 3.4.0\n- Seaborn \u2265 0.11.0\n- Scikit-learn \u2265 1.0.0\n- SciPy \u2265 1.7.0\n\n## License\n\nMIT License\n\n## Author\n\nOussama ELAYEB (elayeb.oussama2020@gmail.com)\n\n## Development Setup\n\n1. Clone the repository\n2. Install dependencies:\n```bash\npoetry install\n```\n\n3. Install pre-commit hooks:\n```bash\npoetry run pre-commit install\n```\n\n4. Run tests:\n```bash\npoetry run pytest\n```\n\n5. Run linting:\n```bash\npoetry run flake8\npoetry run black .\npoetry run isort .\n```\n\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/AmazingFeature`)\n3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)\n4. Push to the branch (`git push origin feature/AmazingFeature`)\n5. Open a Pull Request\n\n## Contact\n\nFor questions, feedback, or support:\n- Email: elayeb.oussama2020@gmail.com\n- GitHub Issues: [Create an issue](https://github.com/elayeboussama/oussama_datalib/issues)\n\n## Acknowledgments\n\n- Thanks to the Python community for the amazing libraries that made this project possible\n- Special thanks to all contributors who help improve this library\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Simplified data manipulation and analysis tools",
    "version": "0.2.2",
    "project_urls": {
        "Homepage": "https://github.com/elayeboussama/oussama_datalib",
        "Repository": "https://github.com/elayeboussama/oussama_datalib"
    },
    "split_keywords": [
        "data",
        " analysis",
        " machine learning",
        " visualization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b359e09bb4a253c91536f46e30bbe77022611c22fb2ce093d9b259659bf66f46",
                "md5": "006dc637cf2fcfe9edb708999870ad18",
                "sha256": "aa21214de34fc022eaf4252a76211f9732d1927a4fa55426d3e6e34859de7e32"
            },
            "downloads": -1,
            "filename": "oussama_datalib-0.2.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "006dc637cf2fcfe9edb708999870ad18",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 9236,
            "upload_time": "2024-12-22T18:10:43",
            "upload_time_iso_8601": "2024-12-22T18:10:43.618032Z",
            "url": "https://files.pythonhosted.org/packages/b3/59/e09bb4a253c91536f46e30bbe77022611c22fb2ce093d9b259659bf66f46/oussama_datalib-0.2.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3009cae054bcd7d560e9f0f6b768054775a501f4f50af3a01269b0606b7834cd",
                "md5": "60ab2631cbe6391ec362062f4c800225",
                "sha256": "9295afb82b206b847677e7ee8382da8a96ae082cdb7bb3bb8f187952dd1cc1dc"
            },
            "downloads": -1,
            "filename": "oussama_datalib-0.2.2.tar.gz",
            "has_sig": false,
            "md5_digest": "60ab2631cbe6391ec362062f4c800225",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 8504,
            "upload_time": "2024-12-22T18:10:47",
            "upload_time_iso_8601": "2024-12-22T18:10:47.520577Z",
            "url": "https://files.pythonhosted.org/packages/30/09/cae054bcd7d560e9f0f6b768054775a501f4f50af3a01269b0606b7834cd/oussama_datalib-0.2.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-22 18:10:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "elayeboussama",
    "github_project": "oussama_datalib",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.4.0"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.11.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.7.0"
                ]
            ]
        }
    ],
    "lcname": "oussama_datalib"
}
        
Elapsed time: 1.71741s