ov-training-kit


Nameov-training-kit JSON
Version 0.1.9 PyPI version JSON
download
home_pagehttps://github.com/openvinotoolkit/openvino_contrib
SummaryWrappers for scikit-learn and PyTorch models with OpenVINO optimization
upload_time2025-08-22 06:43:19
maintainerNone
docs_urlNone
authorNone
requires_python<3.12,>=3.8
licenseApache-2.0
keywords openvino scikit-learn pytorch machine-learning edge-ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # OpenVino training kit

Wrappers for scikit-learn and PyTorch models with OpenVINO optimization.

## About

This module provides easy-to-use wrappers for training, evaluating, and exporting classical (scikit-learn) and deep learning (PyTorch) models optimized for OpenVINO, targeting local AI PCs and edge deployment.


## System Requirements

- **Operating System:** Linux (Ubuntu 18.04+), Windows 10/11, Windows Server 2019+
- **CPU:** x86-64 (Intel or AMD)
- **Python:** 3.8, 3.9, 3.10, 3.11
- **RAM:** 8GB+ recommended
- **GPU:** Optional (not required)
- **Note:** Intel Extension for PyTorch (IPEX) is only supported on Linux/Windows with x86-64 CPUs. On MacOS, some features may not be available.

## Installation

```bash
pip install ov-training-kit
```

## Usage

For detailed usage instructions and examples, please refer to the README files inside the `src/sklearn` and `src/pytorch` folders.

---

For questions, suggestions, or contributions, feel free to open an issue or pull

## 🎓 Credits & License

Developed as part of a GSoC

### Authors

- Leonardo Heim 
- Shivam Basia 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/openvinotoolkit/openvino_contrib",
    "name": "ov-training-kit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.8",
    "maintainer_email": null,
    "keywords": "openvino scikit-learn pytorch machine-learning edge-ai",
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/24/b9/0f625efff7d2de22d7779feab5c7546bea816ab1a4f759ea627af9495e8c/ov_training_kit-0.1.9.tar.gz",
    "platform": null,
    "description": "# OpenVino training kit\n\nWrappers for scikit-learn and PyTorch models with OpenVINO optimization.\n\n## About\n\nThis module provides easy-to-use wrappers for training, evaluating, and exporting classical (scikit-learn) and deep learning (PyTorch) models optimized for OpenVINO, targeting local AI PCs and edge deployment.\n\n\n## System Requirements\n\n- **Operating System:** Linux (Ubuntu 18.04+), Windows 10/11, Windows Server 2019+\n- **CPU:** x86-64 (Intel or AMD)\n- **Python:** 3.8, 3.9, 3.10, 3.11\n- **RAM:** 8GB+ recommended\n- **GPU:** Optional (not required)\n- **Note:** Intel Extension for PyTorch (IPEX) is only supported on Linux/Windows with x86-64 CPUs. On MacOS, some features may not be available.\n\n## Installation\n\n```bash\npip install ov-training-kit\n```\n\n## Usage\n\nFor detailed usage instructions and examples, please refer to the README files inside the `src/sklearn` and `src/pytorch` folders.\n\n---\n\nFor questions, suggestions, or contributions, feel free to open an issue or pull\n\n## \ud83c\udf93 Credits & License\n\nDeveloped as part of a GSoC\n\n### Authors\n\n- Leonardo Heim \n- Shivam Basia \n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Wrappers for scikit-learn and PyTorch models with OpenVINO optimization",
    "version": "0.1.9",
    "project_urls": {
        "Homepage": "https://github.com/openvinotoolkit/openvino_contrib"
    },
    "split_keywords": [
        "openvino",
        "scikit-learn",
        "pytorch",
        "machine-learning",
        "edge-ai"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b46b3b199e3f9aa96defcd7ca7e92db15a0a9fad29efe106808784aced6ec3dd",
                "md5": "6d9ea11d7883fbc73e02ef069524c8dd",
                "sha256": "c0fce7cdc47a8a53d108a9fa9dc3d4b4b8e28ac25f4342df09458c9d3e767233"
            },
            "downloads": -1,
            "filename": "ov_training_kit-0.1.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6d9ea11d7883fbc73e02ef069524c8dd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.8",
            "size": 43166,
            "upload_time": "2025-08-22T06:43:17",
            "upload_time_iso_8601": "2025-08-22T06:43:17.295499Z",
            "url": "https://files.pythonhosted.org/packages/b4/6b/3b199e3f9aa96defcd7ca7e92db15a0a9fad29efe106808784aced6ec3dd/ov_training_kit-0.1.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "24b90f625efff7d2de22d7779feab5c7546bea816ab1a4f759ea627af9495e8c",
                "md5": "397fb23db6a44ad90cdad38c841fa927",
                "sha256": "1ff6219575446af2500d400b0e28302e1301d8ee9f25bc3e04822f44c405a102"
            },
            "downloads": -1,
            "filename": "ov_training_kit-0.1.9.tar.gz",
            "has_sig": false,
            "md5_digest": "397fb23db6a44ad90cdad38c841fa927",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.8",
            "size": 21859,
            "upload_time": "2025-08-22T06:43:19",
            "upload_time_iso_8601": "2025-08-22T06:43:19.494261Z",
            "url": "https://files.pythonhosted.org/packages/24/b9/0f625efff7d2de22d7779feab5c7546bea816ab1a4f759ea627af9495e8c/ov_training_kit-0.1.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-22 06:43:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "openvinotoolkit",
    "github_project": "openvino_contrib",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "ov-training-kit"
}
        
Elapsed time: 0.99079s