py-feat


Namepy-feat JSON
Version 0.6.2 PyPI version JSON
download
home_pagehttps://github.com/cosanlab/py-feat
SummaryFacial Expression Analysis Toolbox
upload_time2024-03-29 21:42:21
maintainerNone
docs_urlNone
authorJin Hyun Cheong, Tiankang Xie, Sophie Byrne, Eshin Jolly, Luke Chang
requires_pythonNone
licenseMIT license
keywords feat face facial expression emotion
VCS
bugtrack_url
requirements pandas numpy seaborn matplotlib nltools numexpr scikit-learn pywavelets h5py Pillow torchvision scikit-image joblib easing_functions celluloid tqdm kornia av xgboost
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Facial Expression Analysis Toolbox

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/cosanlab/py-feat",
    "name": "py-feat",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "feat, face, facial expression, emotion",
    "author": "Jin Hyun Cheong, Tiankang Xie, Sophie Byrne, Eshin Jolly, Luke Chang",
    "author_email": "jcheong0428@gmail.com, eshin.jolly@gmail.com, luke.j.chang@dartmouth.edu",
    "download_url": "https://files.pythonhosted.org/packages/67/46/574a46a627445a7ff1c21d6d806040c36f25dbabd6170c37e7f01881a710/py-feat-0.6.2.tar.gz",
    "platform": null,
    "description": "Facial Expression Analysis Toolbox\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Facial Expression Analysis Toolbox",
    "version": "0.6.2",
    "project_urls": {
        "Homepage": "https://github.com/cosanlab/py-feat"
    },
    "split_keywords": [
        "feat",
        " face",
        " facial expression",
        " emotion"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "08dabff5ad216c0b031c366d6ea37f60d8a12d980801fd0dfd8df71f42eaf9cf",
                "md5": "385e6559a6c7c51d4873b33dd5c3442d",
                "sha256": "d2409192b2997642c079aec8fbdc146cc5ddd629ee1a98676a9347ec367701d4"
            },
            "downloads": -1,
            "filename": "py_feat-0.6.2-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "385e6559a6c7c51d4873b33dd5c3442d",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 10062974,
            "upload_time": "2024-03-29T21:42:18",
            "upload_time_iso_8601": "2024-03-29T21:42:18.567831Z",
            "url": "https://files.pythonhosted.org/packages/08/da/bff5ad216c0b031c366d6ea37f60d8a12d980801fd0dfd8df71f42eaf9cf/py_feat-0.6.2-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6746574a46a627445a7ff1c21d6d806040c36f25dbabd6170c37e7f01881a710",
                "md5": "d4d2f9213499cf42c74c7c01f2b1bd42",
                "sha256": "3ee61ce2f3b9e82bf300bc873aaa92cbf0c319579b85947b9a3572ebb07c8f8e"
            },
            "downloads": -1,
            "filename": "py-feat-0.6.2.tar.gz",
            "has_sig": false,
            "md5_digest": "d4d2f9213499cf42c74c7c01f2b1bd42",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10061265,
            "upload_time": "2024-03-29T21:42:21",
            "upload_time_iso_8601": "2024-03-29T21:42:21.812385Z",
            "url": "https://files.pythonhosted.org/packages/67/46/574a46a627445a7ff1c21d6d806040c36f25dbabd6170c37e7f01881a710/py-feat-0.6.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-29 21:42:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cosanlab",
    "github_project": "py-feat",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.9"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.7.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "2.1"
                ]
            ]
        },
        {
            "name": "nltools",
            "specs": [
                [
                    ">=",
                    "0.5.1"
                ]
            ]
        },
        {
            "name": "numexpr",
            "specs": [
                [
                    "<",
                    "2.8.5"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.2"
                ]
            ]
        },
        {
            "name": "pywavelets",
            "specs": [
                [
                    ">=",
                    "0.3.0"
                ]
            ]
        },
        {
            "name": "h5py",
            "specs": [
                [
                    ">=",
                    "2.7.0"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    ">=",
                    "6.0.0"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": []
        },
        {
            "name": "scikit-image",
            "specs": [
                [
                    ">=",
                    "0.19"
                ]
            ]
        },
        {
            "name": "joblib",
            "specs": []
        },
        {
            "name": "easing_functions",
            "specs": []
        },
        {
            "name": "celluloid",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "kornia",
            "specs": []
        },
        {
            "name": "av",
            "specs": [
                [
                    ">=",
                    "9.2.0"
                ]
            ]
        },
        {
            "name": "xgboost",
            "specs": [
                [
                    ">=",
                    "1.6.0"
                ]
            ]
        }
    ],
    "lcname": "py-feat"
}
        
Elapsed time: 0.18906s