qf-lib


Nameqf-lib JSON
Version 3.0.2 PyPI version JSON
download
home_pagehttps://quarkfin.github.io/qf-lib-info
SummaryQuantitative Finance Library
upload_time2024-11-06 08:52:00
maintainerNone
docs_urlNone
authorJacek Witkowski, Marcin Borratynski, Thomas Ruxton, Dominik Picheta, Olga Kalinowska, Karolina Cynk, Jakub Czerski, Bartlomiej Czajewski, Zeynep Gültuğ Aydemir, Octavian-Mihai Matei, Eirik Thorp Eythorsson, Marek Bais
requires_python>=3.8.0
licenseApache License 2.0
keywords quantitative finance backtester
VCS
bugtrack_url
requirements pandas xarray numpy scipy matplotlib emails Pillow joblib scikit-learn seaborn statsmodels cvxopt openpyxl WeasyPrint Jinja2 arch requests
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # QF-Lib

[![PyPI](https://img.shields.io/pypi/v/qf-lib?color=green&label=PyPI%20Latest%20Release)](https://pypi.org/project/qf-lib/)
[![Downloads](https://static.pepy.tech/personalized-badge/qf-lib?period=month&units=international_system&left_color=grey&right_color=blue&left_text=PyPI%20Downloads%20/%20month)](https://pepy.tech/project/qf-lib)
[![GitHub](https://img.shields.io/github/license/quarkfin/qf-lib?color=orange&label=License)](https://github.com/quarkfin/qf-lib/blob/master/LICENSE)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/qf-lib?color=yellow&label=python)
[![Codecov](https://img.shields.io/codecov/c/gh/quarkfin/qf-lib?color=pink)](https://app.codecov.io/gh/quarkfin/qf-lib)
[![Documentation Status](https://readthedocs.org/projects/qf-lib/badge/)](https://qf-lib.readthedocs.io/)
[![CI](https://github.com/quarkfin/qf-lib/actions/workflows/tests.yml/badge.svg?branch=master)](https://github.com/quarkfin/qf-lib/actions/workflows/tests.yml)
![PyPI - Format](https://img.shields.io/pypi/format/qf-lib?color=lightgrey)
![PyPI - Status](https://img.shields.io/pypi/status/qf-lib?color=darkred)

## What is QF-lib?
**QF-Lib** is a Python library that provides high quality tools for quantitative finance. 
A large part of the project is dedicated to backtesting investment strategies. 
The Backtester uses an **event-driven architecture** and simulates events such as daily market opening 
or closing. It is designed to **test and evaluate any custom investment strategy**.

Main features include:
* Flexible data sourcing - the project supports the possibility of an easy selection of the data source. Currently provides financial data from **Bloomberg**, **Quandl**, **Haver Analytics** or **Portara**. To check if there are any additional dependencies necessary for any of these data providers please visit [the installation guide](https://qf-lib.readthedocs.io/en/latest/installation.html#installing-optional-data-providers).
* Tools to prevent look-ahead bias in the backtesting environment.
* Adapted [data containers](https://qf-lib.readthedocs.io/en/latest/reference/structure.html#containers), which extend the functionality of pandas `Series'` and `Dataframes`.
* Summary generation - all performed studies can be summarized with a practical and informative document explaining the results. [Several document templates](https://qf-lib.readthedocs.io/en/latest/reference/structure.html#analysis) are available in the project.
* Simple adjustment of existing settings and creation of new functionalities.


## Installation
You can install `qf-lib` using the pip command:

```sh
pip install qf-lib
```
 
Alternatively, to install the library from sources, you can download the project and in the qf_lib directory 
(same one where you found this file after cloning the repository) execute the following command:

```sh
python setup.py install
```

## Prerequisites
The library uses [WeasyPrint](https://weasyprint.readthedocs.io) to export documents to PDF. WeasyPrint requires additional dependencies, check the 
[platform-specific instructions for Linux, macOS and Windows installation](https://weasyprint.readthedocs.io/en/stable/install.html).

In order to facilitate the GTK3+ installation process for Windows you can use 
[following installers](https://github.com/tschoonj/GTK-for-Windows-Runtime-Environment-Installer/releases). Download and run the latest 
`gtk3-runtime-x.x.x-x-x-x-ts-win64.exe` file to install the GTK3+.

## Documentation
* Installation guide: https://qf-lib.readthedocs.io/en/latest/installation.html
* Configuration guide: https://qf-lib.readthedocs.io/en/latest/configuration.html
* API documentation: https://qf-lib.readthedocs.io/

            

Raw data

            {
    "_id": null,
    "home_page": "https://quarkfin.github.io/qf-lib-info",
    "name": "qf-lib",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8.0",
    "maintainer_email": null,
    "keywords": "quantitative finance backtester",
    "author": "Jacek Witkowski, Marcin Borratynski, Thomas Ruxton, Dominik Picheta, Olga Kalinowska, Karolina Cynk, Jakub Czerski, Bartlomiej Czajewski, Zeynep G\u00fcltu\u011f Aydemir, Octavian-Mihai Matei, Eirik Thorp Eythorsson, Marek Bais",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/31/b8/0b0e50f621ab09c4a0ebf4b0f8e294a9e1d59334b9108f578ce645e49dbf/qf_lib-3.0.2.tar.gz",
    "platform": null,
    "description": "# QF-Lib\n\n[![PyPI](https://img.shields.io/pypi/v/qf-lib?color=green&label=PyPI%20Latest%20Release)](https://pypi.org/project/qf-lib/)\n[![Downloads](https://static.pepy.tech/personalized-badge/qf-lib?period=month&units=international_system&left_color=grey&right_color=blue&left_text=PyPI%20Downloads%20/%20month)](https://pepy.tech/project/qf-lib)\n[![GitHub](https://img.shields.io/github/license/quarkfin/qf-lib?color=orange&label=License)](https://github.com/quarkfin/qf-lib/blob/master/LICENSE)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/qf-lib?color=yellow&label=python)\n[![Codecov](https://img.shields.io/codecov/c/gh/quarkfin/qf-lib?color=pink)](https://app.codecov.io/gh/quarkfin/qf-lib)\n[![Documentation Status](https://readthedocs.org/projects/qf-lib/badge/)](https://qf-lib.readthedocs.io/)\n[![CI](https://github.com/quarkfin/qf-lib/actions/workflows/tests.yml/badge.svg?branch=master)](https://github.com/quarkfin/qf-lib/actions/workflows/tests.yml)\n![PyPI - Format](https://img.shields.io/pypi/format/qf-lib?color=lightgrey)\n![PyPI - Status](https://img.shields.io/pypi/status/qf-lib?color=darkred)\n\n## What is QF-lib?\n**QF-Lib** is a Python library that provides high quality tools for quantitative finance. \nA large part of the project is dedicated to backtesting investment strategies. \nThe Backtester uses an **event-driven architecture** and simulates events such as daily market opening \nor closing. It is designed to **test and evaluate any custom investment strategy**.\n\nMain features include:\n* Flexible data sourcing - the project supports the possibility of an easy selection of the data source. Currently provides financial data from **Bloomberg**, **Quandl**, **Haver Analytics** or **Portara**. To check if there are any additional dependencies necessary for any of these data providers please visit [the installation guide](https://qf-lib.readthedocs.io/en/latest/installation.html#installing-optional-data-providers).\n* Tools to prevent look-ahead bias in the backtesting environment.\n* Adapted [data containers](https://qf-lib.readthedocs.io/en/latest/reference/structure.html#containers), which extend the functionality of pandas `Series'` and `Dataframes`.\n* Summary generation - all performed studies can be summarized with a practical and informative document explaining the results. [Several document templates](https://qf-lib.readthedocs.io/en/latest/reference/structure.html#analysis) are available in the project.\n* Simple adjustment of existing settings and creation of new functionalities.\n\n\n## Installation\nYou can install `qf-lib` using the pip command:\n\n```sh\npip install qf-lib\n```\n \nAlternatively, to install the library from sources, you can download the project and in the qf_lib directory \n(same one where you found this file after cloning the repository) execute the following command:\n\n```sh\npython setup.py install\n```\n\n## Prerequisites\nThe library uses [WeasyPrint](https://weasyprint.readthedocs.io) to export documents to PDF. WeasyPrint requires additional dependencies, check the \n[platform-specific instructions for Linux, macOS and Windows installation](https://weasyprint.readthedocs.io/en/stable/install.html).\n\nIn order to facilitate the GTK3+ installation process for Windows you can use \n[following installers](https://github.com/tschoonj/GTK-for-Windows-Runtime-Environment-Installer/releases). Download and run the latest \n`gtk3-runtime-x.x.x-x-x-x-ts-win64.exe` file to install the GTK3+.\n\n## Documentation\n* Installation guide: https://qf-lib.readthedocs.io/en/latest/installation.html\n* Configuration guide: https://qf-lib.readthedocs.io/en/latest/configuration.html\n* API documentation: https://qf-lib.readthedocs.io/\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Quantitative Finance Library",
    "version": "3.0.2",
    "project_urls": {
        "Documentation": "https://qf-lib.readthedocs.io",
        "Homepage": "https://quarkfin.github.io/qf-lib-info",
        "Source": "https://github.com/quarkfin/qf-lib"
    },
    "split_keywords": [
        "quantitative",
        "finance",
        "backtester"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b14024a424e5250835e20f1250c20ca7bfa7bbfb11076861e48def22c2bf15d5",
                "md5": "b7d9ba3eb06a9adac458a008568b69a0",
                "sha256": "440422f7e7eec6d5ff2cad8696c0d5c7233c3c8fce7720f0dff0450cdfb2c12e"
            },
            "downloads": -1,
            "filename": "qf_lib-3.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b7d9ba3eb06a9adac458a008568b69a0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8.0",
            "size": 1399561,
            "upload_time": "2024-11-06T08:51:58",
            "upload_time_iso_8601": "2024-11-06T08:51:58.217437Z",
            "url": "https://files.pythonhosted.org/packages/b1/40/24a424e5250835e20f1250c20ca7bfa7bbfb11076861e48def22c2bf15d5/qf_lib-3.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "31b80b0e50f621ab09c4a0ebf4b0f8e294a9e1d59334b9108f578ce645e49dbf",
                "md5": "7c136f0024fb9883af008274fb00908d",
                "sha256": "2429ec0160be0370b10915492ab33408a14837bd3771d1f6e5348b7289835f91"
            },
            "downloads": -1,
            "filename": "qf_lib-3.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "7c136f0024fb9883af008274fb00908d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8.0",
            "size": 11413056,
            "upload_time": "2024-11-06T08:52:00",
            "upload_time_iso_8601": "2024-11-06T08:52:00.112035Z",
            "url": "https://files.pythonhosted.org/packages/31/b8/0b0e50f621ab09c4a0ebf4b0f8e294a9e1d59334b9108f578ce645e49dbf/qf_lib-3.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-06 08:52:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "quarkfin",
    "github_project": "qf-lib",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.4.0"
                ],
                [
                    "<",
                    "2.1.0"
                ]
            ]
        },
        {
            "name": "xarray",
            "specs": [
                [
                    "<=",
                    "2022.9.0"
                ],
                [
                    ">=",
                    "0.21.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.19.3"
                ],
                [
                    "<=",
                    "1.26.4"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.6.3"
                ],
                [
                    "<",
                    "1.12.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.4.0"
                ],
                [
                    "<=",
                    "3.6.1"
                ]
            ]
        },
        {
            "name": "emails",
            "specs": [
                [
                    "==",
                    "0.6"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    ">=",
                    "9.0.0"
                ],
                [
                    "<=",
                    "10.2.0"
                ]
            ]
        },
        {
            "name": "joblib",
            "specs": [
                [
                    "<",
                    "1.1.0"
                ],
                [
                    ">=",
                    "1.0.1"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ],
                [
                    "<",
                    "1.2.0"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.11.1"
                ]
            ]
        },
        {
            "name": "statsmodels",
            "specs": [
                [
                    "<",
                    "0.14.0"
                ],
                [
                    ">=",
                    "0.13.0"
                ]
            ]
        },
        {
            "name": "cvxopt",
            "specs": [
                [
                    "<=",
                    "1.3.2"
                ],
                [
                    ">=",
                    "1.2.7"
                ]
            ]
        },
        {
            "name": "openpyxl",
            "specs": [
                [
                    "<=",
                    "3.0.9"
                ],
                [
                    ">=",
                    "3.0.7"
                ]
            ]
        },
        {
            "name": "WeasyPrint",
            "specs": [
                [
                    "==",
                    "52.5"
                ]
            ]
        },
        {
            "name": "Jinja2",
            "specs": [
                [
                    ">=",
                    "3.0.0"
                ],
                [
                    "<=",
                    "3.1.4"
                ]
            ]
        },
        {
            "name": "arch",
            "specs": [
                [
                    ">=",
                    "5.4"
                ],
                [
                    "<=",
                    "7.0"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    "<=",
                    "2.31.0"
                ],
                [
                    ">=",
                    "2.25.1"
                ]
            ]
        }
    ],
    "lcname": "qf-lib"
}
        
Elapsed time: 0.70674s