Name | qf-lib JSON |
Version |
4.0.0
JSON |
| download |
home_page | https://quarkfin.github.io/qf-lib-info |
Summary | Quantitative Finance Library |
upload_time | 2025-02-04 14:55:35 |
maintainer | None |
docs_url | None |
author | Jacek Witkowski, Marcin Borratynski, Thomas Ruxton, Dominik Picheta, Olga Kalinowska, Karolina Cynk, Jakub Czerski, Bartlomiej Czajewski, Zeynep Gültuğ Aydemir, Octavian-Mihai Matei, Eirik Thorp Eythorsson, Marek Bais |
requires_python | >=3.8.0 |
license | Apache License 2.0 |
keywords |
quantitative
finance
backtester
|
VCS |
 |
bugtrack_url |
|
requirements |
pandas
xarray
numpy
matplotlib
Pillow
scikit-learn
seaborn
openpyxl
WeasyPrint
Jinja2
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# QF-Lib
[](https://pypi.org/project/qf-lib/)
[](https://pepy.tech/project/qf-lib)
[](https://github.com/quarkfin/qf-lib/blob/master/LICENSE)

[](https://app.codecov.io/gh/quarkfin/qf-lib)
[](https://qf-lib.readthedocs.io/)
[](https://github.com/quarkfin/qf-lib/actions/workflows/tests.yml)


## What is QF-lib?
**QF-Lib** is a Python library that provides high quality tools for quantitative finance.
A large part of the project is dedicated to backtesting investment strategies.
The Backtester uses an **event-driven architecture** and simulates events such as daily market opening
or closing. It is designed to **test and evaluate any custom investment strategy**.
Main features include:
* Flexible data sourcing - the project supports the possibility of an easy selection of the data source. Currently provides financial data from **Bloomberg**, **Quandl**, **Haver Analytics** or **Portara**. To check if there are any additional dependencies necessary for any of these data providers please visit [the installation guide](https://qf-lib.readthedocs.io/en/latest/installation.html#installing-optional-data-providers).
* Tools to prevent look-ahead bias in the backtesting environment.
* Adapted [data containers](https://qf-lib.readthedocs.io/en/latest/reference/structure.html#containers), which extend the functionality of pandas `Series'` and `Dataframes`.
* Summary generation - all performed studies can be summarized with a practical and informative document explaining the results. [Several document templates](https://qf-lib.readthedocs.io/en/latest/reference/structure.html#analysis) are available in the project.
* Simple adjustment of existing settings and creation of new functionalities.
## Installation
You can install `qf-lib` using the pip command:
```sh
pip install qf-lib
```
Alternatively, to install the library from sources, you can download the project and in the qf_lib directory
(same one where you found this file after cloning the repository) execute the following command:
```sh
python setup.py install
```
## Prerequisites
The library uses [WeasyPrint](https://weasyprint.readthedocs.io) to export documents to PDF. WeasyPrint requires additional dependencies, check the
[platform-specific instructions for Linux, macOS and Windows installation](https://weasyprint.readthedocs.io/en/stable/install.html).
In order to facilitate the GTK3+ installation process for Windows you can use
[following installers](https://github.com/tschoonj/GTK-for-Windows-Runtime-Environment-Installer/releases). Download and run the latest
`gtk3-runtime-x.x.x-x-x-x-ts-win64.exe` file to install the GTK3+.
## Documentation
* Installation guide: https://qf-lib.readthedocs.io/en/latest/installation.html
* Configuration guide: https://qf-lib.readthedocs.io/en/latest/configuration.html
* API documentation: https://qf-lib.readthedocs.io/
Raw data
{
"_id": null,
"home_page": "https://quarkfin.github.io/qf-lib-info",
"name": "qf-lib",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8.0",
"maintainer_email": null,
"keywords": "quantitative finance backtester",
"author": "Jacek Witkowski, Marcin Borratynski, Thomas Ruxton, Dominik Picheta, Olga Kalinowska, Karolina Cynk, Jakub Czerski, Bartlomiej Czajewski, Zeynep G\u00fcltu\u011f Aydemir, Octavian-Mihai Matei, Eirik Thorp Eythorsson, Marek Bais",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/8e/03/2a853fee56f834a5794466d8d9721331527a203443a45184f098aabf178d/qf_lib-4.0.0.tar.gz",
"platform": null,
"description": "# QF-Lib\n\n[](https://pypi.org/project/qf-lib/)\n[](https://pepy.tech/project/qf-lib)\n[](https://github.com/quarkfin/qf-lib/blob/master/LICENSE)\n\n[](https://app.codecov.io/gh/quarkfin/qf-lib)\n[](https://qf-lib.readthedocs.io/)\n[](https://github.com/quarkfin/qf-lib/actions/workflows/tests.yml)\n\n\n\n## What is QF-lib?\n**QF-Lib** is a Python library that provides high quality tools for quantitative finance. \nA large part of the project is dedicated to backtesting investment strategies. \nThe Backtester uses an **event-driven architecture** and simulates events such as daily market opening \nor closing. It is designed to **test and evaluate any custom investment strategy**.\n\nMain features include:\n* Flexible data sourcing - the project supports the possibility of an easy selection of the data source. Currently provides financial data from **Bloomberg**, **Quandl**, **Haver Analytics** or **Portara**. To check if there are any additional dependencies necessary for any of these data providers please visit [the installation guide](https://qf-lib.readthedocs.io/en/latest/installation.html#installing-optional-data-providers).\n* Tools to prevent look-ahead bias in the backtesting environment.\n* Adapted [data containers](https://qf-lib.readthedocs.io/en/latest/reference/structure.html#containers), which extend the functionality of pandas `Series'` and `Dataframes`.\n* Summary generation - all performed studies can be summarized with a practical and informative document explaining the results. [Several document templates](https://qf-lib.readthedocs.io/en/latest/reference/structure.html#analysis) are available in the project.\n* Simple adjustment of existing settings and creation of new functionalities.\n\n\n## Installation\nYou can install `qf-lib` using the pip command:\n\n```sh\npip install qf-lib\n```\n \nAlternatively, to install the library from sources, you can download the project and in the qf_lib directory \n(same one where you found this file after cloning the repository) execute the following command:\n\n```sh\npython setup.py install\n```\n\n## Prerequisites\nThe library uses [WeasyPrint](https://weasyprint.readthedocs.io) to export documents to PDF. WeasyPrint requires additional dependencies, check the \n[platform-specific instructions for Linux, macOS and Windows installation](https://weasyprint.readthedocs.io/en/stable/install.html).\n\nIn order to facilitate the GTK3+ installation process for Windows you can use \n[following installers](https://github.com/tschoonj/GTK-for-Windows-Runtime-Environment-Installer/releases). Download and run the latest \n`gtk3-runtime-x.x.x-x-x-x-ts-win64.exe` file to install the GTK3+.\n\n## Documentation\n* Installation guide: https://qf-lib.readthedocs.io/en/latest/installation.html\n* Configuration guide: https://qf-lib.readthedocs.io/en/latest/configuration.html\n* API documentation: https://qf-lib.readthedocs.io/\n",
"bugtrack_url": null,
"license": "Apache License 2.0",
"summary": "Quantitative Finance Library",
"version": "4.0.0",
"project_urls": {
"Documentation": "https://qf-lib.readthedocs.io",
"Homepage": "https://quarkfin.github.io/qf-lib-info",
"Source": "https://github.com/quarkfin/qf-lib"
},
"split_keywords": [
"quantitative",
"finance",
"backtester"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "8f642166f5e0c8d8531d82f8a143218cc6953d200ae2aafc2d707b1bc08b19f8",
"md5": "ad4d76c931994cea162177d180a6d646",
"sha256": "332ab735fc2a2063ab30b52bda46735d9d81ddf1f13d5d235a2348e476353af6"
},
"downloads": -1,
"filename": "qf_lib-4.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ad4d76c931994cea162177d180a6d646",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8.0",
"size": 1399887,
"upload_time": "2025-02-04T14:55:33",
"upload_time_iso_8601": "2025-02-04T14:55:33.002758Z",
"url": "https://files.pythonhosted.org/packages/8f/64/2166f5e0c8d8531d82f8a143218cc6953d200ae2aafc2d707b1bc08b19f8/qf_lib-4.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8e032a853fee56f834a5794466d8d9721331527a203443a45184f098aabf178d",
"md5": "346f4d33fa77fa571e9800b9280ac8ba",
"sha256": "0a6258ee2ac01e9f49c8e25ee01062736b2becc2267c3fe21076262bea62ed7b"
},
"downloads": -1,
"filename": "qf_lib-4.0.0.tar.gz",
"has_sig": false,
"md5_digest": "346f4d33fa77fa571e9800b9280ac8ba",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8.0",
"size": 11415693,
"upload_time": "2025-02-04T14:55:35",
"upload_time_iso_8601": "2025-02-04T14:55:35.867690Z",
"url": "https://files.pythonhosted.org/packages/8e/03/2a853fee56f834a5794466d8d9721331527a203443a45184f098aabf178d/qf_lib-4.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-04 14:55:35",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "quarkfin",
"github_project": "qf-lib",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "pandas",
"specs": [
[
">=",
"1.4.0"
],
[
"<=",
"2.2.3"
]
]
},
{
"name": "xarray",
"specs": [
[
">=",
"0.21.0"
],
[
"<=",
"2024.11.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.19.3"
],
[
"<=",
"1.26.4"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.4.0"
],
[
"<=",
"3.6.1"
]
]
},
{
"name": "Pillow",
"specs": [
[
">=",
"9.0.0"
],
[
"<=",
"10.2.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
">=",
"1.0.0"
],
[
"<=",
"1.6.0"
]
]
},
{
"name": "seaborn",
"specs": [
[
">=",
"0.11.1"
]
]
},
{
"name": "openpyxl",
"specs": [
[
"<=",
"3.0.9"
],
[
">=",
"3.0.7"
]
]
},
{
"name": "WeasyPrint",
"specs": [
[
"==",
"52.5"
]
]
},
{
"name": "Jinja2",
"specs": [
[
"<=",
"3.1.4"
],
[
">=",
"3.0.0"
]
]
}
],
"lcname": "qf-lib"
}