# qtregpy
This package provides the software tools to implement Quantile Transformation Regression introduced in
[Spady and Stouli (2020)](https://arxiv.org/pdf/2011.06416.pdf).
With the tools in this package it is possible to obtain inference and estimation results for conditional distribution,
quantile and density functions implied by flexible Gaussian representations.
For further details, please refer to the original text.
## Installation
You can install gtregpy with pip directly from PyPI.
`pip install qtregpy`
## Usage
Here's a simple example of how to use gtregpy:
```python
import qtregpy as qtr
mel_data_path = 'filepath/melbeourne.csv'
x, y = qtr.load_mel_data(mel_data_path)
mel_answer = qtr.compute_basic(x, y)
```
## Documentation
You can find more detailed documentation for each function in docstrings.
## Testing
To run the tests, use the following command:
```python
pytest tests/
```
## Contributing
We welcome contributions! Please see the [Contribution Guide](CONTRIBUTING.md) file for details on how to contribute.
## License
This package is licensed under the MIT license. See the LICENSE file for details.
Raw data
{
"_id": null,
"home_page": "https://github.com/diego-lda/qtregpy",
"name": "qtregpy",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "",
"keywords": "DISTRIBUTION,DENSITY,ECONOMETRICS,ESTIMATION",
"author": "Sami Stouli, Richard Spady, Xiaoran Liang, Diego Lara",
"author_email": "s.stouli@bristol.ac.uk, rspady@jhu.edu, x.liang2@exeter.ac.uk, diegolaradeandres@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/c7/de/04b0818dbf894b562fda5d16827d9a2efff3468358a9d41ea22e83d2805b/qtregpy-0.1.2.tar.gz",
"platform": null,
"description": "# qtregpy\n\nThis package provides the software tools to implement Quantile Transformation Regression introduced in\n[Spady and Stouli (2020)](https://arxiv.org/pdf/2011.06416.pdf).\n\nWith the tools in this package it is possible to obtain inference and estimation results for conditional distribution,\nquantile and density functions implied by flexible Gaussian representations.\n\nFor further details, please refer to the original text.\n\n## Installation\n\nYou can install gtregpy with pip directly from PyPI.\n\n`pip install qtregpy`\n\n## Usage\n\nHere's a simple example of how to use gtregpy:\n\n```python\nimport qtregpy as qtr\n\nmel_data_path = 'filepath/melbeourne.csv'\n\nx, y = qtr.load_mel_data(mel_data_path)\nmel_answer = qtr.compute_basic(x, y)\n```\n\n## Documentation\n\nYou can find more detailed documentation for each function in docstrings.\n\n## Testing\n\nTo run the tests, use the following command:\n\n```python\npytest tests/\n```\n\n## Contributing\n\nWe welcome contributions! Please see the [Contribution Guide](CONTRIBUTING.md) file for details on how to contribute.\n\n## License\n\nThis package is licensed under the MIT license. See the LICENSE file for details.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python package to implement the Quantile Transformation Regression.",
"version": "0.1.2",
"project_urls": {
"Download": "https://github.com/diego-lda/qtregpy/archive/refs/tags/0.1.2.tar.gz",
"Homepage": "https://github.com/diego-lda/qtregpy"
},
"split_keywords": [
"distribution",
"density",
"econometrics",
"estimation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c7d2cb191b96ba1e15801979e527ea318a7142e6c477c32d7c86d81abc530d47",
"md5": "f65f54a5eae50c4bdc321a54c806e5e4",
"sha256": "49b59df9fdff6e0de7fa182790ea576e539d272a05b5303bf87f95970a217281"
},
"downloads": -1,
"filename": "qtregpy-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f65f54a5eae50c4bdc321a54c806e5e4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 11822,
"upload_time": "2023-11-26T15:56:17",
"upload_time_iso_8601": "2023-11-26T15:56:17.142552Z",
"url": "https://files.pythonhosted.org/packages/c7/d2/cb191b96ba1e15801979e527ea318a7142e6c477c32d7c86d81abc530d47/qtregpy-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c7de04b0818dbf894b562fda5d16827d9a2efff3468358a9d41ea22e83d2805b",
"md5": "7a58a93b514e17914d2fd25c3aec70a4",
"sha256": "02d43797679542f1a3331cdf3887e43388551be6bfda31cb7f2c77278f2083d5"
},
"downloads": -1,
"filename": "qtregpy-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "7a58a93b514e17914d2fd25c3aec70a4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 12121,
"upload_time": "2023-11-26T15:56:20",
"upload_time_iso_8601": "2023-11-26T15:56:20.162512Z",
"url": "https://files.pythonhosted.org/packages/c7/de/04b0818dbf894b562fda5d16827d9a2efff3468358a9d41ea22e83d2805b/qtregpy-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-26 15:56:20",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "diego-lda",
"github_project": "qtregpy",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "cvxpy",
"specs": [
[
"==",
"1.3.1"
]
]
},
{
"name": "ecos",
"specs": [
[
"==",
"2.0.12"
]
]
},
{
"name": "qtregpy",
"specs": []
},
{
"name": "iniconfig",
"specs": [
[
"==",
"2.0.0"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"1.24.3"
]
]
},
{
"name": "osqp",
"specs": [
[
"==",
"0.6.3"
]
]
},
{
"name": "pandas",
"specs": [
[
"==",
"2.1.3"
]
]
},
{
"name": "patsy",
"specs": [
[
"==",
"0.5.3"
]
]
},
{
"name": "packaging",
"specs": [
[
"==",
"23.1"
]
]
},
{
"name": "pluggy",
"specs": [
[
"==",
"1.0.0"
]
]
},
{
"name": "pytest",
"specs": [
[
"==",
"7.3.1"
]
]
},
{
"name": "qdldl",
"specs": [
[
"==",
"0.1.7"
]
]
},
{
"name": "scipy",
"specs": [
[
"==",
"1.10.1"
]
]
},
{
"name": "scs",
"specs": [
[
"==",
"3.2.3"
]
]
}
],
"lcname": "qtregpy"
}