quantum-entangled-knowledge-graphs


Namequantum-entangled-knowledge-graphs JSON
Version 1.1.0 PyPI version JSON
download
home_pagehttps://github.com/krish567366/quantum-entangled-knowledge-graphs
SummaryWorld's first open-source library for quantum-enhanced knowledge graph reasoning using entanglement principles
upload_time2025-07-16 05:14:22
maintainerNone
docs_urlNone
authorKrishna Bajpai
requires_python>=3.8
licenseCommercial
keywords quantum computing knowledge graphs quantum entanglement graph neural networks quantum machine learning semantic reasoning artificial intelligence
VCS
bugtrack_url
requirements numpy scipy networkx matplotlib plotly pandas scikit-learn seaborn
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Quantum Entangled Knowledge Graphs (QE-KGR)

[![PyPI - Version](https://img.shields.io/pypi/v/quantum-entangled-knowledge-graphs?color=purple&label=PyPI&logo=pypi)](https://pypi.org/project/quantum-entangled-knowledge-graphs/)
[![PyPI Downloads](https://static.pepy.tech/badge/quantum-entangled-knowledge-graphs)](https://pepy.tech/projects/quantum-entangled-knowledge-graphs)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blacksvg)](https://www.python.org/downloads/)
[![License: Commercial](https://img.shields.io/badge/license-commercial-blueviolet?logo=briefcase)](https://krish567366.github.io/license-server/)
[![Docs](https://img.shields.io/badge/docs-online-blue?logo=readthedocs)](https://krish567366.github.io/quantum-entangled-knowledge-graphs/)

> ๐Ÿš€ **World's First Open-Source Library** for quantum-enhanced knowledge graph reasoning using entanglement principles

## ๐Ÿง  What is QE-KGR?

QE-KGR (Quantum Entangled Knowledge Graph Reasoning) revolutionizes how we represent and reason over complex knowledge by applying quantum mechanics principles to graph theory. Unlike classical knowledge graphs, QE-KGR enables:

- **Quantum Superposition** of multiple relations simultaneously
- **Entanglement-based reasoning** for discovering hidden connections
- **Interference patterns** for enhanced link prediction
- **Non-classical logic** for handling uncertainty and context

## โš›๏ธ Core Features

### ๐Ÿ”— Entangled Graph Representation

- Nodes as quantum states (density matrices/ket vectors)
- Edges as entanglement tensors with superposed relations
- Tensor network representation for efficient computation

### ๐Ÿงฎ Quantum Inference Engine

- Quantum walks for graph traversal
- Grover-like search for subgraph discovery
- Interference-based link prediction
- Entanglement entropy measurements

### ๐Ÿ” Quantum Query Processing

- Vector-based semantic queries
- Hilbert space projections
- Superposed query chains
- Context-aware reasoning

### ๐Ÿ“Š Advanced Visualization

- Interactive entangled graph visualization
- Entropy heatmaps and quantum state projections
- Real-time inference path highlighting

## ๐Ÿš€ Quick Start

### Installation

```bash
pip install quantum-entangled-knowledge-graphs
```

### Basic Usage

```python
import qekgr
from qekgr.graphs import EntangledGraph
from qekgr.reasoning import QuantumInference
from qekgr.query import EntangledQueryEngine

# Create an entangled knowledge graph
graph = EntangledGraph()

# Add quantum nodes and entangled edges
alice = graph.add_quantum_node("Alice", state="physicist")
bob = graph.add_quantum_node("Bob", state="researcher")
graph.add_entangled_edge(alice, bob, relations=["collaborates", "mentors"], 
                        amplitudes=[0.8, 0.6])

# Initialize quantum reasoning engine
inference_engine = QuantumInference(graph)

# Perform quantum walk-based reasoning
result = inference_engine.quantum_walk(start_node=alice, steps=10)

# Query with entanglement-based search
query_engine = EntangledQueryEngine(graph)
answers = query_engine.query("Who might Alice collaborate with in quantum research?")
```

## ๐Ÿ—๏ธ Architecture

```bash
qekgr/
โ”œโ”€โ”€ graphs/          # Quantum graph representations
โ”œโ”€โ”€ reasoning/       # Quantum inference algorithms  
โ”œโ”€โ”€ query/          # Entangled query processing
โ””โ”€โ”€ utils/          # Visualization and utilities
```

## ๐Ÿ“š Applications

- **Drug Discovery**: Finding hidden molecular interaction patterns
- **Scientific Research**: Discovering interdisciplinary connections
- **Social Network Analysis**: Understanding complex relationship dynamics
- **Recommendation Systems**: Quantum-enhanced collaborative filtering
- **Knowledge Discovery**: Uncovering latent semantic bridges

## ๐Ÿ”ฌ Theoretical Foundation

QE-KGR is built on rigorous quantum mechanical principles:

- **Hilbert Space Embeddings**: Knowledge represented in complex vector spaces
- **Tensor Networks**: Efficient quantum state manipulation
- **Entanglement Entropy**: Measuring information correlation
- **Quantum Interference**: Constructive/destructive amplitude patterns

## ๐Ÿ“– Documentation

Comprehensive documentation is available at: [krish567366.github.io/quantum-entangled-knowledge-graphs](https://krish567366.github.io/quantum-entangled-knowledge-graphs/)

## ๐Ÿค Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

## ๐Ÿ“ License

Commercial License - see [LICENSE](LICENSE) file for details.

## ๐Ÿ‘จโ€๐Ÿ’ป Author

**Krishna Bajpai**

- Email: [bajpaikrishna715@gmail.com](mailto:bajpaikrishna715@gmail.com)
- GitHub: [@krish567366](https://github.com/krish567366)

## ๐Ÿ™ Acknowledgments

This project draws inspiration from quantum computing research and modern graph neural networks. Special thanks to the quantum computing and knowledge graph communities.

---

*"In the quantum realm, knowledge is not just connectedโ€”it's entangled."* ๐ŸŒŒ

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/krish567366/quantum-entangled-knowledge-graphs",
    "name": "quantum-entangled-knowledge-graphs",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Krishna Bajpai <bajpaikrishna715@gmail.com>",
    "keywords": "quantum computing, knowledge graphs, quantum entanglement, graph neural networks, quantum machine learning, semantic reasoning, artificial intelligence",
    "author": "Krishna Bajpai",
    "author_email": "Krishna Bajpai <bajpaikrishna715@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/0c/d0/593175716c3ef2e674af0bd75eb3796c1c969d26a041aacec32ede1448a6/quantum_entangled_knowledge_graphs-1.1.0.tar.gz",
    "platform": null,
    "description": "# Quantum Entangled Knowledge Graphs (QE-KGR)\r\n\r\n[![PyPI - Version](https://img.shields.io/pypi/v/quantum-entangled-knowledge-graphs?color=purple&label=PyPI&logo=pypi)](https://pypi.org/project/quantum-entangled-knowledge-graphs/)\r\n[![PyPI Downloads](https://static.pepy.tech/badge/quantum-entangled-knowledge-graphs)](https://pepy.tech/projects/quantum-entangled-knowledge-graphs)\r\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blacksvg)](https://www.python.org/downloads/)\r\n[![License: Commercial](https://img.shields.io/badge/license-commercial-blueviolet?logo=briefcase)](https://krish567366.github.io/license-server/)\r\n[![Docs](https://img.shields.io/badge/docs-online-blue?logo=readthedocs)](https://krish567366.github.io/quantum-entangled-knowledge-graphs/)\r\n\r\n> \ud83d\ude80 **World's First Open-Source Library** for quantum-enhanced knowledge graph reasoning using entanglement principles\r\n\r\n## \ud83e\udde0 What is QE-KGR?\r\n\r\nQE-KGR (Quantum Entangled Knowledge Graph Reasoning) revolutionizes how we represent and reason over complex knowledge by applying quantum mechanics principles to graph theory. Unlike classical knowledge graphs, QE-KGR enables:\r\n\r\n- **Quantum Superposition** of multiple relations simultaneously\r\n- **Entanglement-based reasoning** for discovering hidden connections\r\n- **Interference patterns** for enhanced link prediction\r\n- **Non-classical logic** for handling uncertainty and context\r\n\r\n## \u269b\ufe0f Core Features\r\n\r\n### \ud83d\udd17 Entangled Graph Representation\r\n\r\n- Nodes as quantum states (density matrices/ket vectors)\r\n- Edges as entanglement tensors with superposed relations\r\n- Tensor network representation for efficient computation\r\n\r\n### \ud83e\uddee Quantum Inference Engine\r\n\r\n- Quantum walks for graph traversal\r\n- Grover-like search for subgraph discovery\r\n- Interference-based link prediction\r\n- Entanglement entropy measurements\r\n\r\n### \ud83d\udd0d Quantum Query Processing\r\n\r\n- Vector-based semantic queries\r\n- Hilbert space projections\r\n- Superposed query chains\r\n- Context-aware reasoning\r\n\r\n### \ud83d\udcca Advanced Visualization\r\n\r\n- Interactive entangled graph visualization\r\n- Entropy heatmaps and quantum state projections\r\n- Real-time inference path highlighting\r\n\r\n## \ud83d\ude80 Quick Start\r\n\r\n### Installation\r\n\r\n```bash\r\npip install quantum-entangled-knowledge-graphs\r\n```\r\n\r\n### Basic Usage\r\n\r\n```python\r\nimport qekgr\r\nfrom qekgr.graphs import EntangledGraph\r\nfrom qekgr.reasoning import QuantumInference\r\nfrom qekgr.query import EntangledQueryEngine\r\n\r\n# Create an entangled knowledge graph\r\ngraph = EntangledGraph()\r\n\r\n# Add quantum nodes and entangled edges\r\nalice = graph.add_quantum_node(\"Alice\", state=\"physicist\")\r\nbob = graph.add_quantum_node(\"Bob\", state=\"researcher\")\r\ngraph.add_entangled_edge(alice, bob, relations=[\"collaborates\", \"mentors\"], \r\n                        amplitudes=[0.8, 0.6])\r\n\r\n# Initialize quantum reasoning engine\r\ninference_engine = QuantumInference(graph)\r\n\r\n# Perform quantum walk-based reasoning\r\nresult = inference_engine.quantum_walk(start_node=alice, steps=10)\r\n\r\n# Query with entanglement-based search\r\nquery_engine = EntangledQueryEngine(graph)\r\nanswers = query_engine.query(\"Who might Alice collaborate with in quantum research?\")\r\n```\r\n\r\n## \ud83c\udfd7\ufe0f Architecture\r\n\r\n```bash\r\nqekgr/\r\n\u251c\u2500\u2500 graphs/          # Quantum graph representations\r\n\u251c\u2500\u2500 reasoning/       # Quantum inference algorithms  \r\n\u251c\u2500\u2500 query/          # Entangled query processing\r\n\u2514\u2500\u2500 utils/          # Visualization and utilities\r\n```\r\n\r\n## \ud83d\udcda Applications\r\n\r\n- **Drug Discovery**: Finding hidden molecular interaction patterns\r\n- **Scientific Research**: Discovering interdisciplinary connections\r\n- **Social Network Analysis**: Understanding complex relationship dynamics\r\n- **Recommendation Systems**: Quantum-enhanced collaborative filtering\r\n- **Knowledge Discovery**: Uncovering latent semantic bridges\r\n\r\n## \ud83d\udd2c Theoretical Foundation\r\n\r\nQE-KGR is built on rigorous quantum mechanical principles:\r\n\r\n- **Hilbert Space Embeddings**: Knowledge represented in complex vector spaces\r\n- **Tensor Networks**: Efficient quantum state manipulation\r\n- **Entanglement Entropy**: Measuring information correlation\r\n- **Quantum Interference**: Constructive/destructive amplitude patterns\r\n\r\n## \ud83d\udcd6 Documentation\r\n\r\nComprehensive documentation is available at: [krish567366.github.io/quantum-entangled-knowledge-graphs](https://krish567366.github.io/quantum-entangled-knowledge-graphs/)\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\r\n\r\n## \ud83d\udcdd License\r\n\r\nCommercial License - see [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83d\udc68\u200d\ud83d\udcbb Author\r\n\r\n**Krishna Bajpai**\r\n\r\n- Email: [bajpaikrishna715@gmail.com](mailto:bajpaikrishna715@gmail.com)\r\n- GitHub: [@krish567366](https://github.com/krish567366)\r\n\r\n## \ud83d\ude4f Acknowledgments\r\n\r\nThis project draws inspiration from quantum computing research and modern graph neural networks. Special thanks to the quantum computing and knowledge graph communities.\r\n\r\n---\r\n\r\n*\"In the quantum realm, knowledge is not just connected\u2014it's entangled.\"* \ud83c\udf0c\r\n",
    "bugtrack_url": null,
    "license": "Commercial",
    "summary": "World's first open-source library for quantum-enhanced knowledge graph reasoning using entanglement principles",
    "version": "1.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/krish567366/quantum-entangled-knowledge-graphs/issues",
        "Documentation": "https://krish567366.github.io/quantum-entangled-knowledge-graphs/",
        "Homepage": "https://github.com/krish567366/quantum-entangled-knowledge-graphs",
        "Repository": "https://github.com/krish567366/quantum-entangled-knowledge-graphs"
    },
    "split_keywords": [
        "quantum computing",
        " knowledge graphs",
        " quantum entanglement",
        " graph neural networks",
        " quantum machine learning",
        " semantic reasoning",
        " artificial intelligence"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5cafbdde3bb60d42b200d35b460407934bba880ec60390ad3b2fab62e400f1d5",
                "md5": "a3f11ad5e1b5b19b3b7413b0e185b154",
                "sha256": "4c0ebc77490a279ad0186997d50a715d22ac720a5cc8e3c902e4bb4c19d9b245"
            },
            "downloads": -1,
            "filename": "quantum_entangled_knowledge_graphs-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a3f11ad5e1b5b19b3b7413b0e185b154",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 9920,
            "upload_time": "2025-07-16T05:14:13",
            "upload_time_iso_8601": "2025-07-16T05:14:13.867930Z",
            "url": "https://files.pythonhosted.org/packages/5c/af/bdde3bb60d42b200d35b460407934bba880ec60390ad3b2fab62e400f1d5/quantum_entangled_knowledge_graphs-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0cd0593175716c3ef2e674af0bd75eb3796c1c969d26a041aacec32ede1448a6",
                "md5": "87f9bb5256c70047d19358e5f9736549",
                "sha256": "055dad0e350353827d30356f84d21dd5b57f4be705e1d90c650dda4339ec20b6"
            },
            "downloads": -1,
            "filename": "quantum_entangled_knowledge_graphs-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "87f9bb5256c70047d19358e5f9736549",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 871978,
            "upload_time": "2025-07-16T05:14:22",
            "upload_time_iso_8601": "2025-07-16T05:14:22.491131Z",
            "url": "https://files.pythonhosted.org/packages/0c/d0/593175716c3ef2e674af0bd75eb3796c1c969d26a041aacec32ede1448a6/quantum_entangled_knowledge_graphs-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-16 05:14:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "krish567366",
    "github_project": "quantum-entangled-knowledge-graphs",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.7.0"
                ]
            ]
        },
        {
            "name": "networkx",
            "specs": [
                [
                    ">=",
                    "2.6.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.4.0"
                ]
            ]
        },
        {
            "name": "plotly",
            "specs": [
                [
                    ">=",
                    "5.0.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.11.0"
                ]
            ]
        }
    ],
    "lcname": "quantum-entangled-knowledge-graphs"
}
        
Elapsed time: 0.97039s