rag-startups


Namerag-startups JSON
Version 0.9.0 PyPI version JSON
download
home_pagehttps://github.com/valginer0/rag_startups
SummaryGenerate startup ideas grounded in real YC data using Retrieval-Augmented Generation (RAG).
upload_time2025-08-01 01:28:27
maintainerNone
docs_urlNone
authorVal Giner
requires_python>=3.8
licenseNone
keywords rag ai startup langchain
VCS
bugtrack_url
requirements numpy langchain langchain-community pandas sentence-transformers transformers langchain-chroma langsmith python-dotenv pydantic pydantic-settings backoff chromadb redis cachetools fakeredis requests wbdata typer spacy pytest pytest-cov pytest-benchmark pre-commit black flake8 isort autoflake autopep8 mypy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # RAGVenture
[![Python 3.11](https://img.shields.io/badge/python-3.11-blue.svg)](https://www.python.org/downloads/release/python-3110/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![LangChain](https://img.shields.io/badge/powered%20by-LangChain-blue.svg)](https://github.com/hwchase17/langchain)
[![Sentence Transformers](https://img.shields.io/badge/powered%20by-Sentence%20Transformers-blue.svg)](https://www.sbert.net/)
[![CI](https://github.com/valginer0/rag_startups/actions/workflows/ci.yml/badge.svg)](https://github.com/valginer0/rag_startups/actions/workflows/ci.yml)
[![codecov](https://codecov.io/gh/valginer0/rag_startups/graph/badge.svg)](https://codecov.io/gh/valginer0/rag_startups)

RAGVenture is an intelligent startup idea generator powered by Retrieval-Augmented Generation (RAG). It helps entrepreneurs generate innovative startup ideas by learning from successful companies, combining the power of large language models with real-world startup data.

## Why RAGVenture?

Traditional startup ideation tools either rely on expensive API calls or generate ideas without real-world context. RAGVenture solves this by:
- **Completely FREE**: Runs entirely on your machine with no API costs - zero API keys required!
- **Smart Model Management**: Automatically handles model deprecation and failures with intelligent fallback
- **Data-Driven**: Learns from real startup data to ground suggestions in reality
- **Context-Aware**: Understands patterns from successful startups
- **Intelligent**: Uses RAG to combine LLM capabilities with precise information retrieval
- **Resilient**: Works offline with local models when external APIs are unavailable
- **Production-Ready**: 177 tests with comprehensive coverage, Docker runtime fixes, and monitoring

## System Requirements

- Python 3.11 or higher
- 8GB RAM minimum (16GB recommended)
- 2GB disk space for models and data
- Operating Systems:
  - Linux (recommended)
  - macOS
  - Windows (with WSL for best performance)

## Quick Start

1. **Installation**:
```bash
# Clone the repository
git clone https://github.com/valginer0/RAGVenture.git
cd RAGVenture

# Create virtual environment
python -m venv .venv

# Activate virtual environment
# On Windows:
.venv\Scripts\activate
# On Unix or MacOS:
source .venv/bin/activate

# Install dependencies
pip install -r requirements.txt

# Install spaCy language model for market analysis
python -m spacy download en_core_web_sm
```

2. **Environment Setup** (Optional - system works completely FREE without any setup!):
```bash
# Optional: HuggingFace token for enhanced remote models (system works completely FREE without it)
export HUGGINGFACE_TOKEN="your-token-here"  # Get from huggingface.co

# Smart model management (enabled by default)
export RAG_SMART_MODELS=true
export RAG_MODEL_CHECK_INTERVAL=3600
export RAG_MODEL_TIMEOUT=60

# Optional: LangChain tracing (debugging)
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_ENDPOINT="https://api.smith.langchain.com"
export LANGCHAIN_API_KEY="your-langsmith-api-key"
export LANGCHAIN_PROJECT="your-project-name"
```

3. **Generate Ideas**:
```bash
# Generate 3 startup ideas in the AI domain
python -m rag_startups.cli generate-all "AI" --num-ideas 3

# Generate ideas without market analysis
python -m rag_startups.cli generate-all "fintech" --num-ideas 2 --no-market

# Check model health and status
python -m rag_startups.cli models status

# Use custom startup data file
python -m rag_startups.cli generate-all "education" --file custom_startups.json
```

## Features & Capabilities

### Core Features
- Intelligent Idea Generation:
  - Uses RAG to combine LLM knowledge with real startup data
  - Generates contextually relevant and grounded ideas
  - Provides structured output with problem, solution, and market analysis

### Command-Line Interface
Commands:
- `generate-all`: Generate startup ideas with market analysis
  - Required argument: Topic or domain (e.g., "AI", "fintech")
  - Options:
    - `--num-ideas`: Number of ideas (1-5, default: 1)
    - `--file`: Custom startup data file (default: yc_startups.json)
    - `--market/--no-market`: Include/exclude market analysis
    - `--temperature`: Model creativity (0.0-1.0)
    - `--print-examples`: Show relevant examples

### Smart Model Management
- **Automatic Fallback**: Falls back to local models when external APIs fail
- **Model Migration Intelligence**: Handles model deprecation (e.g., Mistral v0.2→v0.3) automatically
- **Health Monitoring**: Continuous model health checks and status reporting
- **Local Resilience**: Works completely offline with local models
- **CLI Management**: `models` command for status, testing, and diagnostics

### Technical Features
- Smart Analysis:
  - Semantic search for relevant examples
  - Automatic metadata extraction
  - Pattern recognition from successful startups
- Performance Optimized:
  - One-time embedding generation (~22s)
  - Fast idea generation (~0.5s per idea)
  - Efficient data processing (~0.1s load time)
- Production Quality:
  - 31 comprehensive unit tests
  - Automated code formatting
  - Extensive error handling

## Performance

Typical processing times on a standard machine:
- Initial Setup: ~22s (one-time embedding generation)
- Data Loading: ~0.1s
- Idea Generation: ~0.5s per idea

## Docker Support

For containerized deployment, we provide both CPU and GPU support.

### Prerequisites
- Docker and Docker Compose
- For GPU support:
  - NVIDIA GPU with CUDA
  - NVIDIA Container Toolkit
  - nvidia-docker2

### Quick Start with Docker
```bash
# CPU Version (recommended - fully tested)
docker-compose up app-cpu

# GPU Version (with NVIDIA support)
docker-compose up app-gpu

# Run with custom data file
docker-compose run --rm app-cpu python -m rag_startups.cli generate-all fintech --num-ideas 1 --file /app/yc_startups.json
```

**Docker Status**: ✅ **Production Ready** - All runtime issues resolved, works end-to-end with real data.

## Development Setup

1. Clone and setup:
```bash
git clone https://github.com/valginer0/RAGVenture.git
cd RAGVenture
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
```

2. Install development dependencies:
```bash
pip install -r requirements.txt
pre-commit install  # Sets up automatic code formatting
```

3. Run tests:
```bash
pytest tests/  # Should show 177 passing tests
```

## Data Requirements

RAGVenture works with startup data in JSON format. Two options:

1. Use YC Data (Recommended):
   - Download from [Y Combinator](https://www.ycombinator.com/companies)
   - Convert CSV to JSON:
     ```bash
     python -m rag_startups.data.convert_yc_data input.csv -o startups.json
     ```

2. Use Custom Data:
   - Prepare JSON file with required fields
   - See `docs/data_format.md` for schema

## Troubleshooting

1. Embedding Generation Time:
   - First run takes ~22s to generate embeddings
   - Subsequent runs use cached embeddings
   - GPU can significantly speed up this process

2. Common Issues:
   - Missing HUGGINGFACE_TOKEN: Sign up at huggingface.co
   - Memory errors: Reduce batch size with --max-lines
   - GPU errors: Ensure CUDA toolkit is properly installed

## Documentation

- `docs/api.md`: API documentation
- `docs/examples.md`: Usage examples
- `docs/data_format.md`: Data schema
- `CONTRIBUTING.md`: Development guidelines

## Contributing

See [CONTRIBUTING.md](CONTRIBUTING.md) for development setup and guidelines.

## License

This project is licensed under the MIT License - see [LICENSE](LICENSE) for details.

## Startup Names and Legal Considerations

### Name Generation
- Each generated startup name includes a unique identifier (e.g., "TechStartup-x7y9z")
- This identifier ensures technical uniqueness within the tool
- The unique identifier is NOT a substitute for legal name verification

### Important Notes for Users
- Generated names are suggestions only
- The uniqueness of a name at generation time does not guarantee its availability
- Users must perform their own due diligence before using any name

### Name Verification Resources
- USPTO Trademark Database: https://www.uspto.gov/trademarks
- State Business Registries
- Domain Name Availability Tools
- Professional Legal Counsel

### Future Features
- Name availability checking tool (planned)
- Integration with business registry APIs

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/valginer0/rag_startups",
    "name": "rag-startups",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "rag, ai, startup, langchain",
    "author": "Val Giner",
    "author_email": "Val Giner <valginer0@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ae/02/0d06a749c0dae15db9230b51039126c08ed7420e2586594092b771ea86ad/rag_startups-0.9.0.tar.gz",
    "platform": null,
    "description": "# RAGVenture\n[![Python 3.11](https://img.shields.io/badge/python-3.11-blue.svg)](https://www.python.org/downloads/release/python-3110/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![LangChain](https://img.shields.io/badge/powered%20by-LangChain-blue.svg)](https://github.com/hwchase17/langchain)\n[![Sentence Transformers](https://img.shields.io/badge/powered%20by-Sentence%20Transformers-blue.svg)](https://www.sbert.net/)\n[![CI](https://github.com/valginer0/rag_startups/actions/workflows/ci.yml/badge.svg)](https://github.com/valginer0/rag_startups/actions/workflows/ci.yml)\n[![codecov](https://codecov.io/gh/valginer0/rag_startups/graph/badge.svg)](https://codecov.io/gh/valginer0/rag_startups)\n\nRAGVenture is an intelligent startup idea generator powered by Retrieval-Augmented Generation (RAG). It helps entrepreneurs generate innovative startup ideas by learning from successful companies, combining the power of large language models with real-world startup data.\n\n## Why RAGVenture?\n\nTraditional startup ideation tools either rely on expensive API calls or generate ideas without real-world context. RAGVenture solves this by:\n- **Completely FREE**: Runs entirely on your machine with no API costs - zero API keys required!\n- **Smart Model Management**: Automatically handles model deprecation and failures with intelligent fallback\n- **Data-Driven**: Learns from real startup data to ground suggestions in reality\n- **Context-Aware**: Understands patterns from successful startups\n- **Intelligent**: Uses RAG to combine LLM capabilities with precise information retrieval\n- **Resilient**: Works offline with local models when external APIs are unavailable\n- **Production-Ready**: 177 tests with comprehensive coverage, Docker runtime fixes, and monitoring\n\n## System Requirements\n\n- Python 3.11 or higher\n- 8GB RAM minimum (16GB recommended)\n- 2GB disk space for models and data\n- Operating Systems:\n  - Linux (recommended)\n  - macOS\n  - Windows (with WSL for best performance)\n\n## Quick Start\n\n1. **Installation**:\n```bash\n# Clone the repository\ngit clone https://github.com/valginer0/RAGVenture.git\ncd RAGVenture\n\n# Create virtual environment\npython -m venv .venv\n\n# Activate virtual environment\n# On Windows:\n.venv\\Scripts\\activate\n# On Unix or MacOS:\nsource .venv/bin/activate\n\n# Install dependencies\npip install -r requirements.txt\n\n# Install spaCy language model for market analysis\npython -m spacy download en_core_web_sm\n```\n\n2. **Environment Setup** (Optional - system works completely FREE without any setup!):\n```bash\n# Optional: HuggingFace token for enhanced remote models (system works completely FREE without it)\nexport HUGGINGFACE_TOKEN=\"your-token-here\"  # Get from huggingface.co\n\n# Smart model management (enabled by default)\nexport RAG_SMART_MODELS=true\nexport RAG_MODEL_CHECK_INTERVAL=3600\nexport RAG_MODEL_TIMEOUT=60\n\n# Optional: LangChain tracing (debugging)\nexport LANGCHAIN_TRACING_V2=true\nexport LANGCHAIN_ENDPOINT=\"https://api.smith.langchain.com\"\nexport LANGCHAIN_API_KEY=\"your-langsmith-api-key\"\nexport LANGCHAIN_PROJECT=\"your-project-name\"\n```\n\n3. **Generate Ideas**:\n```bash\n# Generate 3 startup ideas in the AI domain\npython -m rag_startups.cli generate-all \"AI\" --num-ideas 3\n\n# Generate ideas without market analysis\npython -m rag_startups.cli generate-all \"fintech\" --num-ideas 2 --no-market\n\n# Check model health and status\npython -m rag_startups.cli models status\n\n# Use custom startup data file\npython -m rag_startups.cli generate-all \"education\" --file custom_startups.json\n```\n\n## Features & Capabilities\n\n### Core Features\n- Intelligent Idea Generation:\n  - Uses RAG to combine LLM knowledge with real startup data\n  - Generates contextually relevant and grounded ideas\n  - Provides structured output with problem, solution, and market analysis\n\n### Command-Line Interface\nCommands:\n- `generate-all`: Generate startup ideas with market analysis\n  - Required argument: Topic or domain (e.g., \"AI\", \"fintech\")\n  - Options:\n    - `--num-ideas`: Number of ideas (1-5, default: 1)\n    - `--file`: Custom startup data file (default: yc_startups.json)\n    - `--market/--no-market`: Include/exclude market analysis\n    - `--temperature`: Model creativity (0.0-1.0)\n    - `--print-examples`: Show relevant examples\n\n### Smart Model Management\n- **Automatic Fallback**: Falls back to local models when external APIs fail\n- **Model Migration Intelligence**: Handles model deprecation (e.g., Mistral v0.2\u2192v0.3) automatically\n- **Health Monitoring**: Continuous model health checks and status reporting\n- **Local Resilience**: Works completely offline with local models\n- **CLI Management**: `models` command for status, testing, and diagnostics\n\n### Technical Features\n- Smart Analysis:\n  - Semantic search for relevant examples\n  - Automatic metadata extraction\n  - Pattern recognition from successful startups\n- Performance Optimized:\n  - One-time embedding generation (~22s)\n  - Fast idea generation (~0.5s per idea)\n  - Efficient data processing (~0.1s load time)\n- Production Quality:\n  - 31 comprehensive unit tests\n  - Automated code formatting\n  - Extensive error handling\n\n## Performance\n\nTypical processing times on a standard machine:\n- Initial Setup: ~22s (one-time embedding generation)\n- Data Loading: ~0.1s\n- Idea Generation: ~0.5s per idea\n\n## Docker Support\n\nFor containerized deployment, we provide both CPU and GPU support.\n\n### Prerequisites\n- Docker and Docker Compose\n- For GPU support:\n  - NVIDIA GPU with CUDA\n  - NVIDIA Container Toolkit\n  - nvidia-docker2\n\n### Quick Start with Docker\n```bash\n# CPU Version (recommended - fully tested)\ndocker-compose up app-cpu\n\n# GPU Version (with NVIDIA support)\ndocker-compose up app-gpu\n\n# Run with custom data file\ndocker-compose run --rm app-cpu python -m rag_startups.cli generate-all fintech --num-ideas 1 --file /app/yc_startups.json\n```\n\n**Docker Status**: \u2705 **Production Ready** - All runtime issues resolved, works end-to-end with real data.\n\n## Development Setup\n\n1. Clone and setup:\n```bash\ngit clone https://github.com/valginer0/RAGVenture.git\ncd RAGVenture\npython -m venv .venv\nsource .venv/bin/activate  # On Windows: .venv\\Scripts\\activate\n```\n\n2. Install development dependencies:\n```bash\npip install -r requirements.txt\npre-commit install  # Sets up automatic code formatting\n```\n\n3. Run tests:\n```bash\npytest tests/  # Should show 177 passing tests\n```\n\n## Data Requirements\n\nRAGVenture works with startup data in JSON format. Two options:\n\n1. Use YC Data (Recommended):\n   - Download from [Y Combinator](https://www.ycombinator.com/companies)\n   - Convert CSV to JSON:\n     ```bash\n     python -m rag_startups.data.convert_yc_data input.csv -o startups.json\n     ```\n\n2. Use Custom Data:\n   - Prepare JSON file with required fields\n   - See `docs/data_format.md` for schema\n\n## Troubleshooting\n\n1. Embedding Generation Time:\n   - First run takes ~22s to generate embeddings\n   - Subsequent runs use cached embeddings\n   - GPU can significantly speed up this process\n\n2. Common Issues:\n   - Missing HUGGINGFACE_TOKEN: Sign up at huggingface.co\n   - Memory errors: Reduce batch size with --max-lines\n   - GPU errors: Ensure CUDA toolkit is properly installed\n\n## Documentation\n\n- `docs/api.md`: API documentation\n- `docs/examples.md`: Usage examples\n- `docs/data_format.md`: Data schema\n- `CONTRIBUTING.md`: Development guidelines\n\n## Contributing\n\nSee [CONTRIBUTING.md](CONTRIBUTING.md) for development setup and guidelines.\n\n## License\n\nThis project is licensed under the MIT License - see [LICENSE](LICENSE) for details.\n\n## Startup Names and Legal Considerations\n\n### Name Generation\n- Each generated startup name includes a unique identifier (e.g., \"TechStartup-x7y9z\")\n- This identifier ensures technical uniqueness within the tool\n- The unique identifier is NOT a substitute for legal name verification\n\n### Important Notes for Users\n- Generated names are suggestions only\n- The uniqueness of a name at generation time does not guarantee its availability\n- Users must perform their own due diligence before using any name\n\n### Name Verification Resources\n- USPTO Trademark Database: https://www.uspto.gov/trademarks\n- State Business Registries\n- Domain Name Availability Tools\n- Professional Legal Counsel\n\n### Future Features\n- Name availability checking tool (planned)\n- Integration with business registry APIs\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Generate startup ideas grounded in real YC data using Retrieval-Augmented Generation (RAG).",
    "version": "0.9.0",
    "project_urls": {
        "Homepage": "https://github.com/valginer0/rag_startups",
        "Repository": "https://github.com/valginer0/rag_startups"
    },
    "split_keywords": [
        "rag",
        " ai",
        " startup",
        " langchain"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9f55e4006f35cd11057beea0101b1063ca287ef43133c15d20eeb4edd50cf14d",
                "md5": "b19062762417c6b466e5ef7d1ead4bba",
                "sha256": "923bde0a915f4c939c551f9f3d7bfe6df7c0cde355956e195e99d7a2b25e0b0e"
            },
            "downloads": -1,
            "filename": "rag_startups-0.9.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b19062762417c6b466e5ef7d1ead4bba",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 71562,
            "upload_time": "2025-08-01T01:28:25",
            "upload_time_iso_8601": "2025-08-01T01:28:25.695414Z",
            "url": "https://files.pythonhosted.org/packages/9f/55/e4006f35cd11057beea0101b1063ca287ef43133c15d20eeb4edd50cf14d/rag_startups-0.9.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ae020d06a749c0dae15db9230b51039126c08ed7420e2586594092b771ea86ad",
                "md5": "b5ac8ec31555864a4ed219ce43deef27",
                "sha256": "430571e74e3bc4da379620b6e973d96338674e537338dd2b4123c8526a25c8a4"
            },
            "downloads": -1,
            "filename": "rag_startups-0.9.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b5ac8ec31555864a4ed219ce43deef27",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 95504,
            "upload_time": "2025-08-01T01:28:27",
            "upload_time_iso_8601": "2025-08-01T01:28:27.724739Z",
            "url": "https://files.pythonhosted.org/packages/ae/02/0d06a749c0dae15db9230b51039126c08ed7420e2586594092b771ea86ad/rag_startups-0.9.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-01 01:28:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "valginer0",
    "github_project": "rag_startups",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "<",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "langchain",
            "specs": [
                [
                    ">=",
                    "0.1.0"
                ]
            ]
        },
        {
            "name": "langchain-community",
            "specs": [
                [
                    ">=",
                    "0.0.1"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "sentence-transformers",
            "specs": [
                [
                    ">=",
                    "2.2.2"
                ]
            ]
        },
        {
            "name": "transformers",
            "specs": [
                [
                    ">=",
                    "4.30.0"
                ]
            ]
        },
        {
            "name": "langchain-chroma",
            "specs": [
                [
                    ">=",
                    "0.1.0"
                ]
            ]
        },
        {
            "name": "langsmith",
            "specs": [
                [
                    ">=",
                    "0.0.30"
                ]
            ]
        },
        {
            "name": "python-dotenv",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "pydantic",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "pydantic-settings",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "backoff",
            "specs": [
                [
                    ">=",
                    "2.2.1"
                ]
            ]
        },
        {
            "name": "chromadb",
            "specs": [
                [
                    ">=",
                    "0.4.0"
                ]
            ]
        },
        {
            "name": "redis",
            "specs": [
                [
                    ">=",
                    "5.0.1"
                ]
            ]
        },
        {
            "name": "cachetools",
            "specs": [
                [
                    ">=",
                    "5.3.2"
                ]
            ]
        },
        {
            "name": "fakeredis",
            "specs": [
                [
                    ">=",
                    "2.20.0"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.31.0"
                ]
            ]
        },
        {
            "name": "wbdata",
            "specs": [
                [
                    ">=",
                    "0.3.0"
                ]
            ]
        },
        {
            "name": "typer",
            "specs": [
                [
                    ">=",
                    "0.9.0"
                ]
            ]
        },
        {
            "name": "spacy",
            "specs": [
                [
                    ">=",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    ">=",
                    "7.0.0"
                ]
            ]
        },
        {
            "name": "pytest-cov",
            "specs": [
                [
                    ">=",
                    "4.0.0"
                ]
            ]
        },
        {
            "name": "pytest-benchmark",
            "specs": [
                [
                    ">=",
                    "4.0.0"
                ]
            ]
        },
        {
            "name": "pre-commit",
            "specs": [
                [
                    ">=",
                    "3.5.0"
                ]
            ]
        },
        {
            "name": "black",
            "specs": [
                [
                    "==",
                    "24.2.0"
                ]
            ]
        },
        {
            "name": "flake8",
            "specs": [
                [
                    ">=",
                    "6.0.0"
                ]
            ]
        },
        {
            "name": "isort",
            "specs": [
                [
                    ">=",
                    "5.13.2"
                ]
            ]
        },
        {
            "name": "autoflake",
            "specs": [
                [
                    ">=",
                    "2.3.0"
                ]
            ]
        },
        {
            "name": "autopep8",
            "specs": [
                [
                    ">=",
                    "2.3.0"
                ]
            ]
        },
        {
            "name": "mypy",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        }
    ],
    "lcname": "rag-startups"
}
        
Elapsed time: 0.63504s