runHiC


NamerunHiC JSON
Version 0.9.0 PyPI version JSON
download
home_pagehttps://github.com/XiaoTaoWang/HiC_pipeline
SummaryA easy-to-use Hi-C processing software supporting distributed computation
upload_time2024-11-21 02:25:08
maintainerNone
docs_urlNone
authorXiaoTao Wang
requires_pythonNone
licenseNone
keywords hi-c arima ice cooler pairs bioinformatics pipeline
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            runHiC
******
.. image:: https://zenodo.org/badge/doi/10.5281/zenodo.55324.svg
   :target: http://dx.doi.org/10.5281/zenodo.55324
.. image:: https://static.pepy.tech/personalized-badge/runhic?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads
   :target: https://pepy.tech/project/runhic

runHiC is an easy-to-use command-line tool for Hi-C data processing.

Since version 0.8.6, runHiC has supported data from all kinds of 3C-based experiments,
including Hi-C, Micro-C, HiChIP/PLAC-Seq, and ChIA-PET. For experiments that do not use
restriction enzymes for DNA fragmentation, you can set the enzyme name arbitrarily for your
record. For example, for Micro-C, you can set it to *MNase*; for ChIA-PET, you can set it to
*sonication*.

Since version 0.8.5, runHiC has changed the default aligner to `chromap <https://github.com/haowenz/chromap>`_,
which is comparable to `bwa-mem <https://github.com/lh3/bwa>`_ in alignment accuracy, but runs over 10 times faster.

Since version 0.8.1, runHiC can be used directly on `Arima HiC <https://arimagenomics.com>`_ data
by setting the enzyme name to *Arima*.

Since version 0.8.0, runHiC has changed its default data container/format from HDF5 to
`Pairs <https://github.com/4dn-dcic/pairix/blob/master/pairs_format_specification.md>`_ and
`Cooler <https://github.com/mirnylab/cooler>`_. 

Design Concepts
===============
runHiC is designed to process Hi-C data from raw sequencing reads(.sra, .fastq, .fastq.gz) to the ICE-corrected
contact matrices. It currently contains 5 subcommands:

+------------+-------------------------------------------------------------------------------------------------------------------+
| mapping    | Map raw sequencing reads to a supplied genome. Support three read aligners: chromap, bwa and minimap2.            |
+------------+-------------------------------------------------------------------------------------------------------------------+
| filtering  | Perform read-level and fragment-level noise removing                                                              |
+------------+-------------------------------------------------------------------------------------------------------------------+
| binning    | 1.Generate contact matirx; 2. Perform ICE/matrix-balancing normalization                                          |
+------------+-------------------------------------------------------------------------------------------------------------------+
| pileup     | Perform the entire processing steps from *mapping* to *binning*                                                   |
+------------+-------------------------------------------------------------------------------------------------------------------+
| quality    | Evaluate the quality of your Hi-C data                                                                            |
+------------+-------------------------------------------------------------------------------------------------------------------+

Links
=====
- `Detailed Documentation <http://xiaotaowang.github.io/HiC_pipeline/>`_
    - `Installation <http://xiaotaowang.github.io/HiC_pipeline/install.html>`_
    - `Quick Start <http://xiaotaowang.github.io/HiC_pipeline/quickstart.html>`_
    - `Data Quality <http://xiaotaowang.github.io/HiC_pipeline/quality.html>`_
    - `Parallel Computation <http://xiaotaowang.github.io/HiC_pipeline/parallel.html>`_
- `Code Repository <https://github.com/XiaoTaoWang/HiC_pipeline/>`_ (At GitHub, Track the package issue)
- `PyPI <https://pypi.python.org/pypi/runHiC>`_ (Download and Installation)

Usage
=====
Open a terminal, type ``runHiC -h`` or ``runHiC <subcommand> -h`` for help information.

Citation
========
Xiaotao Wang. (2016). runHiC: A user-friendly Hi-C data processing software based on hiclib. Zenodo.
`10.5281/zenodo.55324 <http://dx.doi.org/10.5281/zenodo.55324>`_

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/XiaoTaoWang/HiC_pipeline",
    "name": "runHiC",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Hi-C Arima ICE cooler pairs bioinformatics pipeline",
    "author": "XiaoTao Wang",
    "author_email": "wangxiaotao686@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f0/8d/746566efc3f283e1c4ad05deee3ce2fa51b50110ceae18c96bb785b91b9a/runHiC-0.9.0.tar.gz",
    "platform": null,
    "description": "runHiC\n******\n.. image:: https://zenodo.org/badge/doi/10.5281/zenodo.55324.svg\n   :target: http://dx.doi.org/10.5281/zenodo.55324\n.. image:: https://static.pepy.tech/personalized-badge/runhic?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads\n   :target: https://pepy.tech/project/runhic\n\nrunHiC is an easy-to-use command-line tool for Hi-C data processing.\n\nSince version 0.8.6, runHiC has supported data from all kinds of 3C-based experiments,\nincluding Hi-C, Micro-C, HiChIP/PLAC-Seq, and ChIA-PET. For experiments that do not use\nrestriction enzymes for DNA fragmentation, you can set the enzyme name arbitrarily for your\nrecord. For example, for Micro-C, you can set it to *MNase*; for ChIA-PET, you can set it to\n*sonication*.\n\nSince version 0.8.5, runHiC has changed the default aligner to `chromap <https://github.com/haowenz/chromap>`_,\nwhich is comparable to `bwa-mem <https://github.com/lh3/bwa>`_ in alignment accuracy, but runs over 10 times faster.\n\nSince version 0.8.1, runHiC can be used directly on `Arima HiC <https://arimagenomics.com>`_ data\nby setting the enzyme name to *Arima*.\n\nSince version 0.8.0, runHiC has changed its default data container/format from HDF5 to\n`Pairs <https://github.com/4dn-dcic/pairix/blob/master/pairs_format_specification.md>`_ and\n`Cooler <https://github.com/mirnylab/cooler>`_. \n\nDesign Concepts\n===============\nrunHiC is designed to process Hi-C data from raw sequencing reads(.sra, .fastq, .fastq.gz) to the ICE-corrected\ncontact matrices. It currently contains 5 subcommands:\n\n+------------+-------------------------------------------------------------------------------------------------------------------+\n| mapping    | Map raw sequencing reads to a supplied genome. Support three read aligners: chromap, bwa and minimap2.            |\n+------------+-------------------------------------------------------------------------------------------------------------------+\n| filtering  | Perform read-level and fragment-level noise removing                                                              |\n+------------+-------------------------------------------------------------------------------------------------------------------+\n| binning    | 1.Generate contact matirx; 2. Perform ICE/matrix-balancing normalization                                          |\n+------------+-------------------------------------------------------------------------------------------------------------------+\n| pileup     | Perform the entire processing steps from *mapping* to *binning*                                                   |\n+------------+-------------------------------------------------------------------------------------------------------------------+\n| quality    | Evaluate the quality of your Hi-C data                                                                            |\n+------------+-------------------------------------------------------------------------------------------------------------------+\n\nLinks\n=====\n- `Detailed Documentation <http://xiaotaowang.github.io/HiC_pipeline/>`_\n    - `Installation <http://xiaotaowang.github.io/HiC_pipeline/install.html>`_\n    - `Quick Start <http://xiaotaowang.github.io/HiC_pipeline/quickstart.html>`_\n    - `Data Quality <http://xiaotaowang.github.io/HiC_pipeline/quality.html>`_\n    - `Parallel Computation <http://xiaotaowang.github.io/HiC_pipeline/parallel.html>`_\n- `Code Repository <https://github.com/XiaoTaoWang/HiC_pipeline/>`_ (At GitHub, Track the package issue)\n- `PyPI <https://pypi.python.org/pypi/runHiC>`_ (Download and Installation)\n\nUsage\n=====\nOpen a terminal, type ``runHiC -h`` or ``runHiC <subcommand> -h`` for help information.\n\nCitation\n========\nXiaotao Wang. (2016). runHiC: A user-friendly Hi-C data processing software based on hiclib. Zenodo.\n`10.5281/zenodo.55324 <http://dx.doi.org/10.5281/zenodo.55324>`_\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A easy-to-use Hi-C processing software supporting distributed computation",
    "version": "0.9.0",
    "project_urls": {
        "Homepage": "https://github.com/XiaoTaoWang/HiC_pipeline"
    },
    "split_keywords": [
        "hi-c",
        "arima",
        "ice",
        "cooler",
        "pairs",
        "bioinformatics",
        "pipeline"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b3b59a5fbf11d55a1f7c3580d4368cb889079f6416a6c115837d885eb84a355c",
                "md5": "159b185009798839bf3a2c8eb1e91245",
                "sha256": "0a91597c50e384ac1c8c9df55308f5cb13b00bd94baf82cd14988f8e27e03125"
            },
            "downloads": -1,
            "filename": "runHiC-0.9.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "159b185009798839bf3a2c8eb1e91245",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 43566,
            "upload_time": "2024-11-21T02:25:05",
            "upload_time_iso_8601": "2024-11-21T02:25:05.963983Z",
            "url": "https://files.pythonhosted.org/packages/b3/b5/9a5fbf11d55a1f7c3580d4368cb889079f6416a6c115837d885eb84a355c/runHiC-0.9.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f08d746566efc3f283e1c4ad05deee3ce2fa51b50110ceae18c96bb785b91b9a",
                "md5": "c3b063c1831ade455057ab311e63f72e",
                "sha256": "ff9ded3672763e8c70f7acfcbabf91c664cf38f5a361469265fcfdf7e1396dbd"
            },
            "downloads": -1,
            "filename": "runHiC-0.9.0.tar.gz",
            "has_sig": false,
            "md5_digest": "c3b063c1831ade455057ab311e63f72e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 41544,
            "upload_time": "2024-11-21T02:25:08",
            "upload_time_iso_8601": "2024-11-21T02:25:08.104973Z",
            "url": "https://files.pythonhosted.org/packages/f0/8d/746566efc3f283e1c4ad05deee3ce2fa51b50110ceae18c96bb785b91b9a/runHiC-0.9.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-21 02:25:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "XiaoTaoWang",
    "github_project": "HiC_pipeline",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "runhic"
}
        
Elapsed time: 0.35214s