saiunit


Namesaiunit JSON
Version 0.0.16 PyPI version JSON
download
home_pageNone
SummaryEnabling Unit-aware Computations for AI-driven Scientific Computing.
upload_time2025-07-13 05:35:42
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords physical unit physical quantity brain modeling scientific computing ai for science
VCS
bugtrack_url
requirements numpy jax jaxlib typing_extensions
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  	<img alt="Header image of SAIUnit." src="https://raw.githubusercontent.com/chaobrain/saiunit/main/docs/_static/logo.png" width=80%>
</p> 



<p align="center">
	<a href="https://pypi.org/project/saiunit/"><img alt="Supported Python Version" src="https://img.shields.io/pypi/pyversions/saiunit"></a>
	<a href="https://github.com/chaobrain/saiunit/blob/main/LICENSE"><img alt="LICENSE" src="https://img.shields.io/badge/License-Apache%202.0-blue.svg"></a>
    <a href='https://saiunit.readthedocs.io/?badge=latest'>
        <img src='https://readthedocs.org/projects/saiunit/badge/?version=latest' alt='Documentation Status' />
    </a>  	
    <a href="https://badge.fury.io/py/saiunit"><img alt="PyPI version" src="https://badge.fury.io/py/saiunit.svg"></a>
    <a href="https://github.com/chaobrain/saiunit/actions/workflows/CI.yml"><img alt="Continuous Integration" src="https://github.com/chaobrain/saiunit/actions/workflows/CI.yml/badge.svg"></a>
    <a href="https://pepy.tech/projects/saiunit"><img src="https://static.pepy.tech/badge/saiunit" alt="PyPI Downloads"></a>
</p>


## Motivation

[SAIUnit](https://github.com/chaobrain/saiunit) (/saɪ ˈjuːnɪt/) is designed to provide physical units and unit-aware mathematical systems tailored for **S**cientific **AI** within JAX. In this context, Scientific AI refers to the use of AI models or tools to advance scientific computations. SAIUnit evolves from our [BrainUnit](https://github.com/chaobrain/brainunit), a unit framework originally developed for brain dynamics modeling, extending its capabilities to support a broader range of scientific computing applications. SAIUnit is committed to providing rigorous and automatic physical unit conversion and analysis system for general AI-driven scientific computing. 



## Features

Compared to existing unit libraries, such as [Quantities](https://github.com/python-quantities/python-quantities) and [Pint](https://github.com/hgrecco/pint), SAIUnit introduces a rigorous physical unit system specifically designed to support AI computations (e.g., automatic differentiation, just-in-time compilation, and parallelization). Its unique advantages include:

- Integration of over 2,000 commonly used physical units and constants
- Implementation of more than 500 unit-aware mathematical functions
- Deep integration with JAX, providing comprehensive support for modern AI framework features including automatic differentiation (autograd), just-in-time compilation (JIT), vectorization, and parallel computation
- Unit conversion and analysis are performed at compilation time, resulting in zero runtime overhead
- Strict physical unit type checking and dimensional inference system, detecting unit inconsistencies during compilation


```mermaid
graph TD
    A[SAIUnit] --> B[Physical Units]
    A --> C[Mathematical Functions]
    A --> D[JAX Integration]
    B --> B1[2000+ Units]
    B --> B2[Physical Constants]
    C --> C1[500+ Unit-aware Functions]
    D --> D1[Autograd]
    D --> D2[JIT Compilation]
    D --> D3[Vectorization]
    D --> D4[Parallelization]
```

We hope these features establish SAIUnit as a reliable physical unit handling solution for general AI-driven scientific computing scenarios.

A quick example:

```python

import saiunit as u

# Define a physical quantity
x = 3.0 * u.meter
x
# [out] 3. * meter

# autograd
f = lambda x: x ** 3
u.autograd.grad(f)(x)
# [out] 27. * meter2 


# JIT
import jax
jax.jit(f)(x)
# [out] 27. * klitre

# vmap
jax.vmap(f)(u.math.arange(0. * u.mV, 10. * u.mV, 1. * u.mV))
# [out]  ArrayImpl([  0.,   1.,   8.,  27.,  64., 125., 216., 343., 512., 729.]) * mvolt3
```



## Installation

``saiunit`` has been well tested on ``python>=3.9`` + ``jax>=0.4.30`` environments, and can be installed on Windows, Linux, and MacOS.

You can install ``saiunit`` via pip:

```bash
pip install saiunit --upgrade
```

which should install in about 1 minute. If you want to install the latest version from the source, you can clone the repository and install it:

```bash
git clone https://github.com/chaobrain/saiunit.git
cd saiunit
pip install -e .
```

Alternatively, you can install `BrainX`, which bundles `saiunit` with other compatible packages for a comprehensive brain modeling ecosystem:

```bash
pip install BrainX -U
```

## Documentation

The official documentation is hosted on Read the Docs: [https://saiunit.readthedocs.io](https://saiunit.readthedocs.io)



## Citation

```bibtex
@article{wang2025integrating,
  title={Integrating physical units into high-performance AI-driven scientific computing},
  author={Wang, Chaoming and He, Sichao and Luo, Shouwei and Huan, Yuxiang and Wu, Si},
  journal={Nature Communications},
  volume={16},
  number={1},
  pages={3609},
  year={2025},
  publisher={Nature Publishing Group UK London},
  url={https://doi.org/10.1038/s41467-025-58626-4}
}
```


## Ecosystem

`saiunit` has been deeply integrated into following diverse projects, such as:

- [``brainstate``](https://github.com/chaobrain/brainstate): A State-based Transformation System for Program Compilation and Augmentation
- [``braintaichi``](https://github.com/chaobrain/braintaichi): Leveraging Taichi Lang to customize brain dynamics operators
- [``braintools``](https://github.com/chaobrain/braintools): The Common Toolbox for Brain Dynamics Programming.
- [``dendritex``](https://github.com/chaobrain/dendritex): Dendritic Modeling in JAX
- [``pinnx``](https://github.com/chaobrain/pinnx): Physics-Informed Neural Networks for Scientific Machine Learning in JAX.


Other unofficial projects include:

- [``diffrax``](https://github.com/chaoming0625/diffrax): Numerical differential equation solvers in JAX.
- [``jax-md``](https://github.com/Routhleck/jax-md): Differentiable Molecular Dynamics in JAX
- [``Catalax``](https://github.com/Routhleck/Catalax): JAX-based framework to model biological systems
- ...


## Acknowledgement

The initial version of the project benefited a lot from the following projects:

- [``astropy.units``](https://docs.astropy.org/en/stable/units/index.html): physical units in ``astropy``.
- [``brian2.units``](https://brian2.readthedocs.io/en/stable/user/units.html): physical units in ``brian2``.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "saiunit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "physical unit, physical quantity, brain modeling, scientific computing, AI for science",
    "author": null,
    "author_email": "SAIUnit Developers <chao.brain@qq.com>",
    "download_url": null,
    "platform": null,
    "description": "<p align=\"center\">\r\n  \t<img alt=\"Header image of SAIUnit.\" src=\"https://raw.githubusercontent.com/chaobrain/saiunit/main/docs/_static/logo.png\" width=80%>\r\n</p> \r\n\r\n\r\n\r\n<p align=\"center\">\r\n\t<a href=\"https://pypi.org/project/saiunit/\"><img alt=\"Supported Python Version\" src=\"https://img.shields.io/pypi/pyversions/saiunit\"></a>\r\n\t<a href=\"https://github.com/chaobrain/saiunit/blob/main/LICENSE\"><img alt=\"LICENSE\" src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\"></a>\r\n    <a href='https://saiunit.readthedocs.io/?badge=latest'>\r\n        <img src='https://readthedocs.org/projects/saiunit/badge/?version=latest' alt='Documentation Status' />\r\n    </a>  \t\r\n    <a href=\"https://badge.fury.io/py/saiunit\"><img alt=\"PyPI version\" src=\"https://badge.fury.io/py/saiunit.svg\"></a>\r\n    <a href=\"https://github.com/chaobrain/saiunit/actions/workflows/CI.yml\"><img alt=\"Continuous Integration\" src=\"https://github.com/chaobrain/saiunit/actions/workflows/CI.yml/badge.svg\"></a>\r\n    <a href=\"https://pepy.tech/projects/saiunit\"><img src=\"https://static.pepy.tech/badge/saiunit\" alt=\"PyPI Downloads\"></a>\r\n</p>\r\n\r\n\r\n## Motivation\r\n\r\n[SAIUnit](https://github.com/chaobrain/saiunit) (/sa\u026a \u02c8ju\u02d0n\u026at/) is designed to provide physical units and unit-aware mathematical systems tailored for **S**cientific **AI** within JAX. In this context, Scientific AI refers to the use of AI models or tools to advance scientific computations. SAIUnit evolves from our [BrainUnit](https://github.com/chaobrain/brainunit), a unit framework originally developed for brain dynamics modeling, extending its capabilities to support a broader range of scientific computing applications. SAIUnit is committed to providing rigorous and automatic physical unit conversion and analysis system for general AI-driven scientific computing. \r\n\r\n\r\n\r\n## Features\r\n\r\nCompared to existing unit libraries, such as [Quantities](https://github.com/python-quantities/python-quantities) and [Pint](https://github.com/hgrecco/pint), SAIUnit introduces a rigorous physical unit system specifically designed to support AI computations (e.g., automatic differentiation, just-in-time compilation, and parallelization). Its unique advantages include:\r\n\r\n- Integration of over 2,000 commonly used physical units and constants\r\n- Implementation of more than 500 unit-aware mathematical functions\r\n- Deep integration with JAX, providing comprehensive support for modern AI framework features including automatic differentiation (autograd), just-in-time compilation (JIT), vectorization, and parallel computation\r\n- Unit conversion and analysis are performed at compilation time, resulting in zero runtime overhead\r\n- Strict physical unit type checking and dimensional inference system, detecting unit inconsistencies during compilation\r\n\r\n\r\n```mermaid\r\ngraph TD\r\n    A[SAIUnit] --> B[Physical Units]\r\n    A --> C[Mathematical Functions]\r\n    A --> D[JAX Integration]\r\n    B --> B1[2000+ Units]\r\n    B --> B2[Physical Constants]\r\n    C --> C1[500+ Unit-aware Functions]\r\n    D --> D1[Autograd]\r\n    D --> D2[JIT Compilation]\r\n    D --> D3[Vectorization]\r\n    D --> D4[Parallelization]\r\n```\r\n\r\nWe hope these features establish SAIUnit as a reliable physical unit handling solution for general AI-driven scientific computing scenarios.\r\n\r\nA quick example:\r\n\r\n```python\r\n\r\nimport saiunit as u\r\n\r\n# Define a physical quantity\r\nx = 3.0 * u.meter\r\nx\r\n# [out] 3. * meter\r\n\r\n# autograd\r\nf = lambda x: x ** 3\r\nu.autograd.grad(f)(x)\r\n# [out] 27. * meter2 \r\n\r\n\r\n# JIT\r\nimport jax\r\njax.jit(f)(x)\r\n# [out] 27. * klitre\r\n\r\n# vmap\r\njax.vmap(f)(u.math.arange(0. * u.mV, 10. * u.mV, 1. * u.mV))\r\n# [out]  ArrayImpl([  0.,   1.,   8.,  27.,  64., 125., 216., 343., 512., 729.]) * mvolt3\r\n```\r\n\r\n\r\n\r\n## Installation\r\n\r\n``saiunit`` has been well tested on ``python>=3.9`` + ``jax>=0.4.30`` environments, and can be installed on Windows, Linux, and MacOS.\r\n\r\nYou can install ``saiunit`` via pip:\r\n\r\n```bash\r\npip install saiunit --upgrade\r\n```\r\n\r\nwhich should install in about 1 minute. If you want to install the latest version from the source, you can clone the repository and install it:\r\n\r\n```bash\r\ngit clone https://github.com/chaobrain/saiunit.git\r\ncd saiunit\r\npip install -e .\r\n```\r\n\r\nAlternatively, you can install `BrainX`, which bundles `saiunit` with other compatible packages for a comprehensive brain modeling ecosystem:\r\n\r\n```bash\r\npip install BrainX -U\r\n```\r\n\r\n## Documentation\r\n\r\nThe official documentation is hosted on Read the Docs: [https://saiunit.readthedocs.io](https://saiunit.readthedocs.io)\r\n\r\n\r\n\r\n## Citation\r\n\r\n```bibtex\r\n@article{wang2025integrating,\r\n  title={Integrating physical units into high-performance AI-driven scientific computing},\r\n  author={Wang, Chaoming and He, Sichao and Luo, Shouwei and Huan, Yuxiang and Wu, Si},\r\n  journal={Nature Communications},\r\n  volume={16},\r\n  number={1},\r\n  pages={3609},\r\n  year={2025},\r\n  publisher={Nature Publishing Group UK London},\r\n  url={https://doi.org/10.1038/s41467-025-58626-4}\r\n}\r\n```\r\n\r\n\r\n## Ecosystem\r\n\r\n`saiunit` has been deeply integrated into following diverse projects, such as:\r\n\r\n- [``brainstate``](https://github.com/chaobrain/brainstate): A State-based Transformation System for Program Compilation and Augmentation\r\n- [``braintaichi``](https://github.com/chaobrain/braintaichi): Leveraging Taichi Lang to customize brain dynamics operators\r\n- [``braintools``](https://github.com/chaobrain/braintools): The Common Toolbox for Brain Dynamics Programming.\r\n- [``dendritex``](https://github.com/chaobrain/dendritex): Dendritic Modeling in JAX\r\n- [``pinnx``](https://github.com/chaobrain/pinnx): Physics-Informed Neural Networks for Scientific Machine Learning in JAX.\r\n\r\n\r\nOther unofficial projects include:\r\n\r\n- [``diffrax``](https://github.com/chaoming0625/diffrax): Numerical differential equation solvers in JAX.\r\n- [``jax-md``](https://github.com/Routhleck/jax-md): Differentiable Molecular Dynamics in JAX\r\n- [``Catalax``](https://github.com/Routhleck/Catalax): JAX-based framework to model biological systems\r\n- ...\r\n\r\n\r\n## Acknowledgement\r\n\r\nThe initial version of the project benefited a lot from the following projects:\r\n\r\n- [``astropy.units``](https://docs.astropy.org/en/stable/units/index.html): physical units in ``astropy``.\r\n- [``brian2.units``](https://brian2.readthedocs.io/en/stable/user/units.html): physical units in ``brian2``.\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Enabling Unit-aware Computations for AI-driven Scientific Computing.",
    "version": "0.0.16",
    "project_urls": {
        "Bug Tracker": "https://github.com/chaobrain/saiunit/issues",
        "Documentation": "https://saiunit.readthedocs.io/",
        "homepage": "https://github.com/chaobrain/saiunit",
        "repository": "https://github.com/chaobrain/saiunit"
    },
    "split_keywords": [
        "physical unit",
        " physical quantity",
        " brain modeling",
        " scientific computing",
        " ai for science"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "be56928dfdf6a3daa595b7f460617e9dd794a1a81ceb1c6e81989bcec6a96bc3",
                "md5": "ac8121720d1297679f24c2fb46c0ec78",
                "sha256": "f321090c488e699596fbe8277fbf9229150dd2653386d96e102ad634b3315a0e"
            },
            "downloads": -1,
            "filename": "saiunit-0.0.16-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ac8121720d1297679f24c2fb46c0ec78",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 332121,
            "upload_time": "2025-07-13T05:35:42",
            "upload_time_iso_8601": "2025-07-13T05:35:42.058305Z",
            "url": "https://files.pythonhosted.org/packages/be/56/928dfdf6a3daa595b7f460617e9dd794a1a81ceb1c6e81989bcec6a96bc3/saiunit-0.0.16-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-13 05:35:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "chaobrain",
    "github_project": "saiunit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "jax",
            "specs": []
        },
        {
            "name": "jaxlib",
            "specs": []
        },
        {
            "name": "typing_extensions",
            "specs": []
        }
    ],
    "lcname": "saiunit"
}
        
Elapsed time: 0.74393s