scglue


Namescglue JSON
Version 0.4.0 PyPI version JSON
download
home_pageNone
SummaryGraph-linked unified embedding for unpaired single-cell multi-omics data integration
upload_time2025-09-03 03:33:40
maintainerNone
docs_urlNone
authorNone
requires_python>=3.6
licenseNone
keywords bioinformatics deep-learning single-cell single-cell-multiomics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GLUE (Graph-Linked Unified Embedding)

[![stars-badge](https://img.shields.io/github/stars/gao-lab/GLUE?logo=GitHub&color=yellow)](https://github.com/gao-lab/GLUE/stargazers)
[![pypi-badge](https://img.shields.io/pypi/v/scglue)](https://pypi.org/project/scglue)
[![conda-badge](https://anaconda.org/bioconda/scglue/badges/version.svg)](https://anaconda.org/bioconda/scglue)
[![docs-badge](https://readthedocs.org/projects/scglue/badge/?version=latest)](https://scglue.readthedocs.io/en/latest/?badge=latest)
[![build-badge](https://github.com/gao-lab/GLUE/actions/workflows/build.yml/badge.svg)](https://github.com/gao-lab/GLUE/actions/workflows/build.yml)
[![codecov-badge](https://codecov.io/gh/gao-lab/GLUE/graph/badge.svg?token=49YVG6XHSG)](https://codecov.io/gh/gao-lab/GLUE)
[![style-badge](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/python/black)
[![license-badge](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

Graph-linked unified embedding for single-cell multi-omics data integration

![Model architecture](docs/_static/architecture.svg)

For more details, please check out our [publication](https://doi.org/10.1038/s41587-022-01284-4).

## Directory structure

```
.
├── scglue                  # Main Python package
├── data                    # Data files
├── evaluation              # Method evaluation pipelines
├── experiments             # Experiments and case studies
├── tests                   # Unit tests for the Python package
├── docs                    # Documentation files
├── custom                  # Customized third-party packages
├── packrat                 # Reproducible R environment via packrat
├── env.yaml                # Reproducible Python environment via conda
├── pyproject.toml          # Python package metadata
├── LICENSE
└── README.md
```

## Installation

The `scglue` package can be installed via conda using one of the following commands:

```sh
conda install -c conda-forge -c bioconda scglue  # CPU only
conda install -c conda-forge -c bioconda scglue pytorch-gpu  # With GPU support
```

Or, it can also be installed via pip:

```sh
pip install scglue
```

> Installing within a
> [conda environment](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
> is recommended.

## Usage

Please checkout the documentations and tutorials at
[scglue.readthedocs.io](https://scglue.readthedocs.io).

A Chinese version is also available [here](https://scglue.readthedocs.io/zh_CN/latest/).

## Development

Install scglue in editable form via flit (first install flit via conda or pip
if not installed already):

```sh
flit install -s
```

Run unit tests:

```sh
pytest --cov="scglue" --cov-report="term-missing" tests [--cpu-only]
```

Build documentation:

```sh
sphinx-build -b gettext docs docs/_build/gettext
sphinx-intl update -p docs/_build/gettext -l zh_CN -d docs/locale
sphinx-build -b html -D language=en docs docs/_build/html/en  # English version
sphinx-build -b html -D language=zh_CN docs docs/_build/html/zh_CN  # Chinese version
```

## Reproduce results

1. Checkout the repository to v0.2.0:

   ```sh
   git checkout tags/v0.2.0
   ```

2. Create a local conda environment using the `env.yaml` file,
and then install scglue:

   ```sh
   conda env create -p conda -f env.yaml && conda activate ./conda
   flit install -s
   ```

3. Set up a project-specific R environment:

   ```R
   packrat::restore()  # Packrat should be automatically installed if not available.
   install.packages("data/download/Saunders-2018/DropSeq.util_2.0.tar.gz", repos = NULL)
   install.packages("custom/Seurat_4.0.2.tar.gz", lib = "packrat/custom", repos = NULL)
   ```

   > R 4.0.2 was used during the project, but any version above 4.0.0 should be compatible.

4. Follow instructions in `data` to prepare the necessary data.
5. Follow instructions in `evaluation` for method evaluation.
6. Follow instructions in `experiments` for case studies.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "scglue",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "bioinformatics, deep-learning, single-cell, single-cell-multiomics",
    "author": null,
    "author_email": "Zhi-Jie Cao <caozj@mail.cbi.pku.edu.cn>, Xin-Ming Tu <xinmingtu@pku.edu.cn>",
    "download_url": "https://files.pythonhosted.org/packages/58/6c/ef3ec82a9c0d1ef7e08983fb194043b506a2d0e2a3ee6c93f6244417b93b/scglue-0.4.0.tar.gz",
    "platform": null,
    "description": "# GLUE (Graph-Linked Unified Embedding)\n\n[![stars-badge](https://img.shields.io/github/stars/gao-lab/GLUE?logo=GitHub&color=yellow)](https://github.com/gao-lab/GLUE/stargazers)\n[![pypi-badge](https://img.shields.io/pypi/v/scglue)](https://pypi.org/project/scglue)\n[![conda-badge](https://anaconda.org/bioconda/scglue/badges/version.svg)](https://anaconda.org/bioconda/scglue)\n[![docs-badge](https://readthedocs.org/projects/scglue/badge/?version=latest)](https://scglue.readthedocs.io/en/latest/?badge=latest)\n[![build-badge](https://github.com/gao-lab/GLUE/actions/workflows/build.yml/badge.svg)](https://github.com/gao-lab/GLUE/actions/workflows/build.yml)\n[![codecov-badge](https://codecov.io/gh/gao-lab/GLUE/graph/badge.svg?token=49YVG6XHSG)](https://codecov.io/gh/gao-lab/GLUE)\n[![style-badge](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/python/black)\n[![license-badge](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n\nGraph-linked unified embedding for single-cell multi-omics data integration\n\n![Model architecture](docs/_static/architecture.svg)\n\nFor more details, please check out our [publication](https://doi.org/10.1038/s41587-022-01284-4).\n\n## Directory structure\n\n```\n.\n\u251c\u2500\u2500 scglue                  # Main Python package\n\u251c\u2500\u2500 data                    # Data files\n\u251c\u2500\u2500 evaluation              # Method evaluation pipelines\n\u251c\u2500\u2500 experiments             # Experiments and case studies\n\u251c\u2500\u2500 tests                   # Unit tests for the Python package\n\u251c\u2500\u2500 docs                    # Documentation files\n\u251c\u2500\u2500 custom                  # Customized third-party packages\n\u251c\u2500\u2500 packrat                 # Reproducible R environment via packrat\n\u251c\u2500\u2500 env.yaml                # Reproducible Python environment via conda\n\u251c\u2500\u2500 pyproject.toml          # Python package metadata\n\u251c\u2500\u2500 LICENSE\n\u2514\u2500\u2500 README.md\n```\n\n## Installation\n\nThe `scglue` package can be installed via conda using one of the following commands:\n\n```sh\nconda install -c conda-forge -c bioconda scglue  # CPU only\nconda install -c conda-forge -c bioconda scglue pytorch-gpu  # With GPU support\n```\n\nOr, it can also be installed via pip:\n\n```sh\npip install scglue\n```\n\n> Installing within a\n> [conda environment](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)\n> is recommended.\n\n## Usage\n\nPlease checkout the documentations and tutorials at\n[scglue.readthedocs.io](https://scglue.readthedocs.io).\n\nA Chinese version is also available [here](https://scglue.readthedocs.io/zh_CN/latest/).\n\n## Development\n\nInstall scglue in editable form via flit (first install flit via conda or pip\nif not installed already):\n\n```sh\nflit install -s\n```\n\nRun unit tests:\n\n```sh\npytest --cov=\"scglue\" --cov-report=\"term-missing\" tests [--cpu-only]\n```\n\nBuild documentation:\n\n```sh\nsphinx-build -b gettext docs docs/_build/gettext\nsphinx-intl update -p docs/_build/gettext -l zh_CN -d docs/locale\nsphinx-build -b html -D language=en docs docs/_build/html/en  # English version\nsphinx-build -b html -D language=zh_CN docs docs/_build/html/zh_CN  # Chinese version\n```\n\n## Reproduce results\n\n1. Checkout the repository to v0.2.0:\n\n   ```sh\n   git checkout tags/v0.2.0\n   ```\n\n2. Create a local conda environment using the `env.yaml` file,\nand then install scglue:\n\n   ```sh\n   conda env create -p conda -f env.yaml && conda activate ./conda\n   flit install -s\n   ```\n\n3. Set up a project-specific R environment:\n\n   ```R\n   packrat::restore()  # Packrat should be automatically installed if not available.\n   install.packages(\"data/download/Saunders-2018/DropSeq.util_2.0.tar.gz\", repos = NULL)\n   install.packages(\"custom/Seurat_4.0.2.tar.gz\", lib = \"packrat/custom\", repos = NULL)\n   ```\n\n   > R 4.0.2 was used during the project, but any version above 4.0.0 should be compatible.\n\n4. Follow instructions in `data` to prepare the necessary data.\n5. Follow instructions in `evaluation` for method evaluation.\n6. Follow instructions in `experiments` for case studies.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Graph-linked unified embedding for unpaired single-cell multi-omics data integration",
    "version": "0.4.0",
    "project_urls": {
        "Github": "https://github.com/gao-lab/GLUE"
    },
    "split_keywords": [
        "bioinformatics",
        " deep-learning",
        " single-cell",
        " single-cell-multiomics"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "573b729cb7feea34c7e24c64d3340f825e826e2c87401e1ca99f1126ed7b185f",
                "md5": "139c2b7d91e916c3b167f92357b80b9c",
                "sha256": "9c3219b196a759b4c95d341e9d09d1694b3f83518b961d2769440205b5fa460a"
            },
            "downloads": -1,
            "filename": "scglue-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "139c2b7d91e916c3b167f92357b80b9c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 86676,
            "upload_time": "2025-09-03T03:33:39",
            "upload_time_iso_8601": "2025-09-03T03:33:39.440239Z",
            "url": "https://files.pythonhosted.org/packages/57/3b/729cb7feea34c7e24c64d3340f825e826e2c87401e1ca99f1126ed7b185f/scglue-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "586cef3ec82a9c0d1ef7e08983fb194043b506a2d0e2a3ee6c93f6244417b93b",
                "md5": "2f83a05b67dd4804eb3d1c7dd15e0604",
                "sha256": "ac57432e030dd0d7460604c63d66b7a2a510cfe1ab8c9c67cc4aa3c4d5fdb021"
            },
            "downloads": -1,
            "filename": "scglue-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2f83a05b67dd4804eb3d1c7dd15e0604",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 77223,
            "upload_time": "2025-09-03T03:33:40",
            "upload_time_iso_8601": "2025-09-03T03:33:40.857574Z",
            "url": "https://files.pythonhosted.org/packages/58/6c/ef3ec82a9c0d1ef7e08983fb194043b506a2d0e2a3ee6c93f6244417b93b/scglue-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-03 03:33:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "gao-lab",
    "github_project": "GLUE",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "scglue"
}
        
Elapsed time: 0.51095s