scglue


Namescglue JSON
Version 0.3.2 PyPI version JSON
download
home_page
SummaryGraph-linked unified embedding for unpaired single-cell multi-omics data integration
upload_time2022-08-26 12:41:45
maintainer
docs_urlNone
author
requires_python>=3.6
license
keywords bioinformatics deep-learning single-cell single-cell-multiomics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GLUE (Graph-Linked Unified Embedding)

[![license-badge](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![pypi-badge](https://img.shields.io/pypi/v/scglue)](https://pypi.org/project/scglue)
[![conda-badge](https://anaconda.org/bioconda/scglue/badges/version.svg)](https://anaconda.org/bioconda/scglue)
[![docs-badge](https://readthedocs.org/projects/scglue/badge/?version=latest)](https://scglue.readthedocs.io/en/latest/?badge=latest)
[![build-badge](https://github.com/gao-lab/GLUE/actions/workflows/build.yml/badge.svg)](https://github.com/gao-lab/GLUE/actions/workflows/build.yml)
[![coverage-badge](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/Jeff1995/e704b2f886ff6a37477311b90fdf7efa/raw/coverage.json)](https://github.com/gao-lab/GLUE/actions/workflows/build.yml)

Graph-linked unified embedding for single-cell multi-omics data integration

![Model architecture](docs/_static/architecture.svg)

For more details, please check out our [publication](https://doi.org/10.1038/s41587-022-01284-4).

## Directory structure

```
.
├── scglue                  # Main Python package
├── data                    # Data files
├── evaluation              # Method evaluation pipelines
├── experiments             # Experiments and case studies
├── tests                   # Unit tests for the Python package
├── docs                    # Documentation files
├── custom                  # Customized third-party packages
├── packrat                 # Reproducible R environment via packrat
├── env.yaml                # Reproducible Python environment via conda
├── pyproject.toml          # Python package metadata
├── LICENSE
└── README.md
```

## Installation

The `scglue` package can be installed via conda using one of the following commands:

```sh
conda install -c conda-forge -c bioconda scglue  # CPU only
conda install -c conda-forge -c bioconda scglue pytorch-gpu  # With GPU support
```

Or, it can also be installed via pip:

```sh
pip install scglue
```

> Installing within a
> [conda environment](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
> is recommended.

## Usage

Please checkout the documentations and tutorials at
[scglue.readthedocs.io](https://scglue.readthedocs.io).

## Development

Install scglue in editable form via flit (first install flit via conda or pip
if not installed already):

```sh
flit install -s
```

Run unit tests:

```sh
pytest --cov="scglue" --cov-report="term-missing" tests [--cpu-only]
```

Build documentation:

```sh
sphinx-build -b gettext docs docs/_build/gettext
sphinx-intl update -p docs/_build/gettext -l zh_CN -d docs/locale
sphinx-build -b html -D language=en docs docs/_build/html/en  # English version
sphinx-build -b html -D language=zh_CN docs docs/_build/html/zh_CN  # Chinese version
```

## Reproduce results

1. Checkout the repository to v0.2.0:

   ```sh
   git checkout tags/v0.2.0
   ```

2. Create a local conda environment using the `env.yaml` file,
and then install scglue:

   ```sh
   conda env create -p conda -f env.yaml && conda activate ./conda
   flit install -s
   ```

3. Set up a project-specific R environment:

   ```R
   packrat::restore()  # Packrat should be automatically installed if not available.
   install.packages("data/download/Saunders-2018/DropSeq.util_2.0.tar.gz", repos = NULL)
   install.packages("custom/Seurat_4.0.2.tar.gz", lib = "packrat/custom", repos = NULL)
   ```

   > R 4.0.2 was used during the project, but any version above 4.0.0 should be compatible.

4. Follow instructions in `data` to prepare the necessary data.
5. Follow instructions in `evaluation` for method evaluation.
6. Follow instructions in `experiments` for case studies.


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "scglue",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "bioinformatics,deep-learning,single-cell,single-cell-multiomics",
    "author": "",
    "author_email": "Zhi-Jie Cao <caozj@mail.cbi.pku.edu.cn>, Xin-Ming Tu <xinmingtu@pku.edu.cn>",
    "download_url": "https://files.pythonhosted.org/packages/72/91/b542b29a1ccfbf1d22f48e98a2960da850495eb1c935f30dfffef00b758b/scglue-0.3.2.tar.gz",
    "platform": null,
    "description": "# GLUE (Graph-Linked Unified Embedding)\n\n[![license-badge](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![pypi-badge](https://img.shields.io/pypi/v/scglue)](https://pypi.org/project/scglue)\n[![conda-badge](https://anaconda.org/bioconda/scglue/badges/version.svg)](https://anaconda.org/bioconda/scglue)\n[![docs-badge](https://readthedocs.org/projects/scglue/badge/?version=latest)](https://scglue.readthedocs.io/en/latest/?badge=latest)\n[![build-badge](https://github.com/gao-lab/GLUE/actions/workflows/build.yml/badge.svg)](https://github.com/gao-lab/GLUE/actions/workflows/build.yml)\n[![coverage-badge](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/Jeff1995/e704b2f886ff6a37477311b90fdf7efa/raw/coverage.json)](https://github.com/gao-lab/GLUE/actions/workflows/build.yml)\n\nGraph-linked unified embedding for single-cell multi-omics data integration\n\n![Model architecture](docs/_static/architecture.svg)\n\nFor more details, please check out our [publication](https://doi.org/10.1038/s41587-022-01284-4).\n\n## Directory structure\n\n```\n.\n\u251c\u2500\u2500 scglue                  # Main Python package\n\u251c\u2500\u2500 data                    # Data files\n\u251c\u2500\u2500 evaluation              # Method evaluation pipelines\n\u251c\u2500\u2500 experiments             # Experiments and case studies\n\u251c\u2500\u2500 tests                   # Unit tests for the Python package\n\u251c\u2500\u2500 docs                    # Documentation files\n\u251c\u2500\u2500 custom                  # Customized third-party packages\n\u251c\u2500\u2500 packrat                 # Reproducible R environment via packrat\n\u251c\u2500\u2500 env.yaml                # Reproducible Python environment via conda\n\u251c\u2500\u2500 pyproject.toml          # Python package metadata\n\u251c\u2500\u2500 LICENSE\n\u2514\u2500\u2500 README.md\n```\n\n## Installation\n\nThe `scglue` package can be installed via conda using one of the following commands:\n\n```sh\nconda install -c conda-forge -c bioconda scglue  # CPU only\nconda install -c conda-forge -c bioconda scglue pytorch-gpu  # With GPU support\n```\n\nOr, it can also be installed via pip:\n\n```sh\npip install scglue\n```\n\n> Installing within a\n> [conda environment](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)\n> is recommended.\n\n## Usage\n\nPlease checkout the documentations and tutorials at\n[scglue.readthedocs.io](https://scglue.readthedocs.io).\n\n## Development\n\nInstall scglue in editable form via flit (first install flit via conda or pip\nif not installed already):\n\n```sh\nflit install -s\n```\n\nRun unit tests:\n\n```sh\npytest --cov=\"scglue\" --cov-report=\"term-missing\" tests [--cpu-only]\n```\n\nBuild documentation:\n\n```sh\nsphinx-build -b gettext docs docs/_build/gettext\nsphinx-intl update -p docs/_build/gettext -l zh_CN -d docs/locale\nsphinx-build -b html -D language=en docs docs/_build/html/en  # English version\nsphinx-build -b html -D language=zh_CN docs docs/_build/html/zh_CN  # Chinese version\n```\n\n## Reproduce results\n\n1. Checkout the repository to v0.2.0:\n\n   ```sh\n   git checkout tags/v0.2.0\n   ```\n\n2. Create a local conda environment using the `env.yaml` file,\nand then install scglue:\n\n   ```sh\n   conda env create -p conda -f env.yaml && conda activate ./conda\n   flit install -s\n   ```\n\n3. Set up a project-specific R environment:\n\n   ```R\n   packrat::restore()  # Packrat should be automatically installed if not available.\n   install.packages(\"data/download/Saunders-2018/DropSeq.util_2.0.tar.gz\", repos = NULL)\n   install.packages(\"custom/Seurat_4.0.2.tar.gz\", lib = \"packrat/custom\", repos = NULL)\n   ```\n\n   > R 4.0.2 was used during the project, but any version above 4.0.0 should be compatible.\n\n4. Follow instructions in `data` to prepare the necessary data.\n5. Follow instructions in `evaluation` for method evaluation.\n6. Follow instructions in `experiments` for case studies.\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Graph-linked unified embedding for unpaired single-cell multi-omics data integration",
    "version": "0.3.2",
    "project_urls": {
        "Github": "https://github.com/gao-lab/GLUE"
    },
    "split_keywords": [
        "bioinformatics",
        "deep-learning",
        "single-cell",
        "single-cell-multiomics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dc97d4730124de7edb1be55b48bbcb7057587708ca52d0a75bca275969969cd4",
                "md5": "a6fdc92d7d869a38c9781e9e83e78518",
                "sha256": "efec4e3f8cc3ffce362e180e4912327d4aacc2dd0a76a6cb06e851a426695d6d"
            },
            "downloads": -1,
            "filename": "scglue-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a6fdc92d7d869a38c9781e9e83e78518",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 81121,
            "upload_time": "2022-08-26T12:41:43",
            "upload_time_iso_8601": "2022-08-26T12:41:43.866799Z",
            "url": "https://files.pythonhosted.org/packages/dc/97/d4730124de7edb1be55b48bbcb7057587708ca52d0a75bca275969969cd4/scglue-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7291b542b29a1ccfbf1d22f48e98a2960da850495eb1c935f30dfffef00b758b",
                "md5": "d952994a889d378a3a771f729db460fd",
                "sha256": "fd57ebfa400233cbb1ab4fab4ad6a9dbf4db2c5ca715ba31c71c7a36cc931241"
            },
            "downloads": -1,
            "filename": "scglue-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "d952994a889d378a3a771f729db460fd",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 71100,
            "upload_time": "2022-08-26T12:41:45",
            "upload_time_iso_8601": "2022-08-26T12:41:45.867742Z",
            "url": "https://files.pythonhosted.org/packages/72/91/b542b29a1ccfbf1d22f48e98a2960da850495eb1c935f30dfffef00b758b/scglue-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-08-26 12:41:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "gao-lab",
    "github_project": "GLUE",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "scglue"
}
        
Elapsed time: 0.19638s