# simsopt

[](https://codecov.io/gh/hiddenSymmetries/simsopt)
[](https://zenodo.org/badge/latestdoi/247710081)


`simsopt` is a framework for optimizing
[stellarators](https://en.wikipedia.org/wiki/Stellarator).
The high-level routines of `simsopt` are in python, with calls to C++
or fortran where needed for performance. Several types of components
are included:
- Interfaces to physics codes, e.g. for MHD equilibrium.
- Tools for defining objective functions and parameter spaces for
optimization.
- Geometric objects that are important for stellarators - surfaces and
curves - with several available parameterizations.
- Efficient implementations of the Biot-Savart law and other magnetic
field representations, including derivatives.
- Tools for parallelized finite-difference gradient calculations.
The design of `simsopt` is guided by several principles:
- Thorough unit testing, regression testing, and continuous
integration.
- Extensibility: It should be possible to add new codes and terms to
the objective function without editing modules that already work,
i.e. the [open-closed principle](https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle).
This is because any edits to working code can potentially introduce bugs.
- Modularity: Physics modules that are not needed for your
optimization problem do not need to be installed. For instance, to
optimize SPEC equilibria, the VMEC module need not be installed.
- Flexibility: The components used to define an objective function can
be re-used for applications other than standard optimization. For
instance, a `simsopt` objective function is a standard python
function that can be plotted, passed to optimization packages
outside of `simsopt`, etc.
`simsopt` is fully open-source, and anyone is welcome to use it, make
suggestions, and contribute.
Several methods are available for installing `simsopt`. One
recommended approach is to use pip:
pip install simsopt
For detailed installation instructions on some specific systems, see
[the wiki](https://github.com/hiddenSymmetries/simsopt/wiki).
Also, a Docker container is available with `simsopt` and its components pre-installed, which
can be started using
docker run -it --rm hiddensymmetries/simsopt
More [installation
options](https://simsopt.readthedocs.io/en/latest/installation.html),
[instructions for the Docker
container](https://simsopt.readthedocs.io/en/latest/containers.html), and
other information can be found in the [main simsopt documentation
here.](https://simsopt.readthedocs.io)
Some of the physics modules with compiled code reside in separate
repositories. These separate modules include
- [VMEC](https://github.com/hiddenSymmetries/VMEC2000), for MHD
equilibrium.
- [SPEC](https://github.com/PrincetonUniversity/SPEC), for MHD
equilibrium.
- [booz_xform](https://hiddensymmetries.github.io/booz_xform), for
Boozer coordinates.
If you use `simsopt` in your research, kindly cite the code using
[this reference](https://doi.org/10.21105/joss.03525):
[1] M Landreman, B Medasani, F Wechsung, A Giuliani, R Jorge, and C Zhu,
"SIMSOPT: A flexible framework for stellarator optimization",
*J. Open Source Software* **6**, 3525 (2021).
See also [the simsopt publications page](https://simsopt.readthedocs.io/en/latest/publications.html).
We gratefully acknowledge funding from the [Simons Foundation's Hidden
symmetries and fusion energy
project](https://hiddensymmetries.princeton.edu).
Raw data
{
"_id": null,
"home_page": null,
"name": "simsopt",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Bharat Medasani <mbkumar@gmail.com>, Matt Landreman <mattland@umd.edu>",
"keywords": "plasma physics, plasma, magnetohydrodynamics, mhd, nuclear fusion reactor, fusion, stellarator, vmec, spec, optimization, Biot-Savart, magnetostatics",
"author": null,
"author_email": "Matt Landreman <mattland@umd.edu>, Bharat Medasani <mbkumar@gmail.com>, Florian Wechsung <wechsung@nyu.edu>",
"download_url": "https://files.pythonhosted.org/packages/d7/d5/29b448ddbe0819c99c093bbd21bfb32cccb80e05af806c7e14461324879d/simsopt-1.10.1.tar.gz",
"platform": null,
"description": "# simsopt\n\n\n[](https://codecov.io/gh/hiddenSymmetries/simsopt)\n[](https://zenodo.org/badge/latestdoi/247710081)\n\n\n\n\n`simsopt` is a framework for optimizing\n[stellarators](https://en.wikipedia.org/wiki/Stellarator).\nThe high-level routines of `simsopt` are in python, with calls to C++\nor fortran where needed for performance. Several types of components\nare included:\n\n- Interfaces to physics codes, e.g. for MHD equilibrium.\n- Tools for defining objective functions and parameter spaces for\n optimization.\n- Geometric objects that are important for stellarators - surfaces and\n curves - with several available parameterizations.\n- Efficient implementations of the Biot-Savart law and other magnetic\n field representations, including derivatives.\n- Tools for parallelized finite-difference gradient calculations.\n\nThe design of `simsopt` is guided by several principles:\n\n- Thorough unit testing, regression testing, and continuous\n integration.\n- Extensibility: It should be possible to add new codes and terms to\n the objective function without editing modules that already work,\n i.e. the [open-closed principle](https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle).\n This is because any edits to working code can potentially introduce bugs.\n- Modularity: Physics modules that are not needed for your\n optimization problem do not need to be installed. For instance, to\n optimize SPEC equilibria, the VMEC module need not be installed.\n- Flexibility: The components used to define an objective function can\n be re-used for applications other than standard optimization. For\n instance, a `simsopt` objective function is a standard python\n function that can be plotted, passed to optimization packages\n outside of `simsopt`, etc.\n\n`simsopt` is fully open-source, and anyone is welcome to use it, make\nsuggestions, and contribute.\n\nSeveral methods are available for installing `simsopt`. One\nrecommended approach is to use pip:\n\n pip install simsopt\n\nFor detailed installation instructions on some specific systems, see\n[the wiki](https://github.com/hiddenSymmetries/simsopt/wiki).\nAlso, a Docker container is available with `simsopt` and its components pre-installed, which\ncan be started using\n\n docker run -it --rm hiddensymmetries/simsopt\n\nMore [installation\noptions](https://simsopt.readthedocs.io/en/latest/installation.html),\n[instructions for the Docker\ncontainer](https://simsopt.readthedocs.io/en/latest/containers.html), and\nother information can be found in the [main simsopt documentation\nhere.](https://simsopt.readthedocs.io)\n\nSome of the physics modules with compiled code reside in separate\nrepositories. These separate modules include\n\n- [VMEC](https://github.com/hiddenSymmetries/VMEC2000), for MHD\n equilibrium.\n- [SPEC](https://github.com/PrincetonUniversity/SPEC), for MHD\n equilibrium.\n- [booz_xform](https://hiddensymmetries.github.io/booz_xform), for\n Boozer coordinates.\n \nIf you use `simsopt` in your research, kindly cite the code using\n[this reference](https://doi.org/10.21105/joss.03525):\n\n[1] M Landreman, B Medasani, F Wechsung, A Giuliani, R Jorge, and C Zhu,\n \"SIMSOPT: A flexible framework for stellarator optimization\",\n *J. Open Source Software* **6**, 3525 (2021).\n\nSee also [the simsopt publications page](https://simsopt.readthedocs.io/en/latest/publications.html).\n\nWe gratefully acknowledge funding from the [Simons Foundation's Hidden\nsymmetries and fusion energy\nproject](https://hiddensymmetries.princeton.edu). \n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Framework for optimizing stellarators",
"version": "1.10.1",
"project_urls": {
"Documentation": "https://simsopt.readthedocs.io",
"Download": "https://pypi.org/project/simsopt",
"Homepage": "https://github.com/hiddenSymmetries/simsopt",
"Issues": "https://github.com/hiddenSymmetries/simsopt/issues",
"Repository": "https://github.com/hiddenSymmetries/simsopt"
},
"split_keywords": [
"plasma physics",
" plasma",
" magnetohydrodynamics",
" mhd",
" nuclear fusion reactor",
" fusion",
" stellarator",
" vmec",
" spec",
" optimization",
" biot-savart",
" magnetostatics"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "d09c3265f8c6aede2d361190399a9f7d887297c7fc34977897516fbe2822bf50",
"md5": "fb7fb70c65a730c585bfa8dc0bab91e9",
"sha256": "bdf069a904a2d165bb21a55df7eea91b3621877bbce9a83c1cb6fb0e8004401a"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "fb7fb70c65a730c585bfa8dc0bab91e9",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1310675,
"upload_time": "2025-07-22T18:34:21",
"upload_time_iso_8601": "2025-07-22T18:34:21.584568Z",
"url": "https://files.pythonhosted.org/packages/d0/9c/3265f8c6aede2d361190399a9f7d887297c7fc34977897516fbe2822bf50/simsopt-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "32874817630d77ce97709cb50d08c417614b900ac3f91271395a053f52dc5ad8",
"md5": "f729f0dee1fe5a02c010f83f9deab9b0",
"sha256": "d5ad956150c5265492f15d54eeb53683fd0e100e31e0d69fa23f61236268b46f"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "f729f0dee1fe5a02c010f83f9deab9b0",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1179834,
"upload_time": "2025-07-22T18:34:23",
"upload_time_iso_8601": "2025-07-22T18:34:23.318243Z",
"url": "https://files.pythonhosted.org/packages/32/87/4817630d77ce97709cb50d08c417614b900ac3f91271395a053f52dc5ad8/simsopt-1.10.1-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b7cb04128de22fcd248fe2fe626a316bacaabfc073fd7b649d01661952caf742",
"md5": "9f753931bd59215cbee03ef16503eef5",
"sha256": "481014537fb45fab330867f88e2c6dafa31c10ca16909cc23e0dedc3e18d7155"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "9f753931bd59215cbee03ef16503eef5",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1286310,
"upload_time": "2025-07-22T18:34:24",
"upload_time_iso_8601": "2025-07-22T18:34:24.377307Z",
"url": "https://files.pythonhosted.org/packages/b7/cb/04128de22fcd248fe2fe626a316bacaabfc073fd7b649d01661952caf742/simsopt-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "99807af54d22adec0aa8218601876038e3a669074a74b3a19fe8bee6ab4938d9",
"md5": "0e7850bf4df2a14123a80c408f064fef",
"sha256": "759b85694f2966d4d1ba6e83de57b4baf9195eca6b0c414a046186e2730df3ba"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "0e7850bf4df2a14123a80c408f064fef",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1411477,
"upload_time": "2025-07-22T18:34:25",
"upload_time_iso_8601": "2025-07-22T18:34:25.768441Z",
"url": "https://files.pythonhosted.org/packages/99/80/7af54d22adec0aa8218601876038e3a669074a74b3a19fe8bee6ab4938d9/simsopt-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bd5c1e3b1969ded03401e7c5c65084916d16d1c90f37cde62b4aa4fd7ece7140",
"md5": "b149ce445c12d4da88c7569ff9792978",
"sha256": "13eb9bd5c939e9bc3ae49a95029b873df748b563c7f58ddac259a1c5366679bf"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "b149ce445c12d4da88c7569ff9792978",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1311961,
"upload_time": "2025-07-22T18:34:27",
"upload_time_iso_8601": "2025-07-22T18:34:27.112781Z",
"url": "https://files.pythonhosted.org/packages/bd/5c/1e3b1969ded03401e7c5c65084916d16d1c90f37cde62b4aa4fd7ece7140/simsopt-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a8c77e9686b6a411022793ac12d43fa4987cfa76912e96f59b92ba3eb18bd9a1",
"md5": "1d02058889eb15a1901353ee2a8e8db0",
"sha256": "8779a34260a0abb61ce764440ae2629e4c841c0441b22a68e05c7600289e09c1"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "1d02058889eb15a1901353ee2a8e8db0",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1181049,
"upload_time": "2025-07-22T18:34:28",
"upload_time_iso_8601": "2025-07-22T18:34:28.421477Z",
"url": "https://files.pythonhosted.org/packages/a8/c7/7e9686b6a411022793ac12d43fa4987cfa76912e96f59b92ba3eb18bd9a1/simsopt-1.10.1-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e9f8f5ee6357b6477232c7532e906b2658e789942dfa26e6097d770fada503eb",
"md5": "313ce023c13497afdf9f8ee7dc7fdbb9",
"sha256": "e1a762a96c41b3482b8d67f0c33fe1ab5d0abd04b47e992a561d8d9ebf8edf78"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "313ce023c13497afdf9f8ee7dc7fdbb9",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1287279,
"upload_time": "2025-07-22T18:34:30",
"upload_time_iso_8601": "2025-07-22T18:34:30.210382Z",
"url": "https://files.pythonhosted.org/packages/e9/f8/f5ee6357b6477232c7532e906b2658e789942dfa26e6097d770fada503eb/simsopt-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "49383a171265b62c36ccdc80d338760d1368534f1381f207e90776ccb0603805",
"md5": "f4e99f4333391c7ab44991cf795306f4",
"sha256": "dcaa67df2a2765aba3eb9f874fca07c9ed81611dcc8e31b0bc8448a3e81ad472"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f4e99f4333391c7ab44991cf795306f4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1413106,
"upload_time": "2025-07-22T18:34:31",
"upload_time_iso_8601": "2025-07-22T18:34:31.265303Z",
"url": "https://files.pythonhosted.org/packages/49/38/3a171265b62c36ccdc80d338760d1368534f1381f207e90776ccb0603805/simsopt-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b34c3a8b0c9b512d9074e403e9e4c3f6e2eb1db8ab9a70cfd5dd38e98497f244",
"md5": "7de67e711eb36ba7edf15da789e14cf6",
"sha256": "59b0fcc7076a627a88cd3d746966538041e8062e28ccebfc7c365d8a45a43dc3"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp312-cp312-macosx_10_13_x86_64.whl",
"has_sig": false,
"md5_digest": "7de67e711eb36ba7edf15da789e14cf6",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1317698,
"upload_time": "2025-07-22T18:34:32",
"upload_time_iso_8601": "2025-07-22T18:34:32.318924Z",
"url": "https://files.pythonhosted.org/packages/b3/4c/3a8b0c9b512d9074e403e9e4c3f6e2eb1db8ab9a70cfd5dd38e98497f244/simsopt-1.10.1-cp312-cp312-macosx_10_13_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1fb107be2823d446e59970c0e919f2cc582e1d7c8e074843066f4f8b05e39b31",
"md5": "ff8a1b8f0b321763db57703611a0734d",
"sha256": "d5c7287cc4d344e2d9b0060daadcbfc94f262511d1fbd1665ad66ce0c817352c"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "ff8a1b8f0b321763db57703611a0734d",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1184241,
"upload_time": "2025-07-22T18:34:33",
"upload_time_iso_8601": "2025-07-22T18:34:33.312501Z",
"url": "https://files.pythonhosted.org/packages/1f/b1/07be2823d446e59970c0e919f2cc582e1d7c8e074843066f4f8b05e39b31/simsopt-1.10.1-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f3d3c84e1ca752e4cc491f714d1b2d52550b8efd0af9b36848e9ae258ac5e6c7",
"md5": "ddc6343d83ed0d52c46863d3c8fb637c",
"sha256": "84012566e53d0de38f1cc0f0e2e96282da0506108a1ed9bf24c10da62e91e77c"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "ddc6343d83ed0d52c46863d3c8fb637c",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1287286,
"upload_time": "2025-07-22T18:34:34",
"upload_time_iso_8601": "2025-07-22T18:34:34.651571Z",
"url": "https://files.pythonhosted.org/packages/f3/d3/c84e1ca752e4cc491f714d1b2d52550b8efd0af9b36848e9ae258ac5e6c7/simsopt-1.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2f625426bf692b6d33964646c29ed5fde9bf41eaf885af5633f9a1cf228d3619",
"md5": "f07c3e8979171796d5d65a205f4dbf38",
"sha256": "284e29626d6f9da5072e79ac417cd683d7ccade4795c8e721ef12432982800ec"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f07c3e8979171796d5d65a205f4dbf38",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1412195,
"upload_time": "2025-07-22T18:34:35",
"upload_time_iso_8601": "2025-07-22T18:34:35.695778Z",
"url": "https://files.pythonhosted.org/packages/2f/62/5426bf692b6d33964646c29ed5fde9bf41eaf885af5633f9a1cf228d3619/simsopt-1.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1bf73d86849d672742828a49b7900d734147b87f929536318c335b28e2ed286a",
"md5": "e7d84f268d13c6c24f51ce19bd113cd3",
"sha256": "33b59c52416521bb4e8cd5880d7f86876cdb34191e983e1bc53cdce60ce19fa3"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp313-cp313-macosx_10_13_x86_64.whl",
"has_sig": false,
"md5_digest": "e7d84f268d13c6c24f51ce19bd113cd3",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1317836,
"upload_time": "2025-07-22T18:34:37",
"upload_time_iso_8601": "2025-07-22T18:34:37.107159Z",
"url": "https://files.pythonhosted.org/packages/1b/f7/3d86849d672742828a49b7900d734147b87f929536318c335b28e2ed286a/simsopt-1.10.1-cp313-cp313-macosx_10_13_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "897d7486314853c83fe0518aab5f62579958368e278a595e974ecbddb8b559e0",
"md5": "3bd726d685c9c5de3d0685fa8b1d6b4d",
"sha256": "9a331257cae6f9ea274bed25c581d5f50720c462398e977b8aecbb65f7811a47"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp313-cp313-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "3bd726d685c9c5de3d0685fa8b1d6b4d",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1184348,
"upload_time": "2025-07-22T18:34:38",
"upload_time_iso_8601": "2025-07-22T18:34:38.120943Z",
"url": "https://files.pythonhosted.org/packages/89/7d/7486314853c83fe0518aab5f62579958368e278a595e974ecbddb8b559e0/simsopt-1.10.1-cp313-cp313-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "22374a6d5464b9dbfe77e502842296f271d6e84337f5da614029b6947fda21b0",
"md5": "ae9bf03c49c0c852ffafb7ebb5bde3d8",
"sha256": "84e158f2e7df5e95012c343690b5e09c72ee4b5a09f7679947d81078ef0ca60e"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "ae9bf03c49c0c852ffafb7ebb5bde3d8",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1287554,
"upload_time": "2025-07-22T18:34:39",
"upload_time_iso_8601": "2025-07-22T18:34:39.130828Z",
"url": "https://files.pythonhosted.org/packages/22/37/4a6d5464b9dbfe77e502842296f271d6e84337f5da614029b6947fda21b0/simsopt-1.10.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2f2293ce176a562475ee981036dac5bc2f86a2714fa0c77db7f5b0d8f7ae8d9d",
"md5": "f7b434fa68f8967283732c606e846bd4",
"sha256": "b8fa266afc66970b0a3f66696209cffecce38187c61968f664b70b3a9f338eae"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f7b434fa68f8967283732c606e846bd4",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1412353,
"upload_time": "2025-07-22T18:34:40",
"upload_time_iso_8601": "2025-07-22T18:34:40.483033Z",
"url": "https://files.pythonhosted.org/packages/2f/22/93ce176a562475ee981036dac5bc2f86a2714fa0c77db7f5b0d8f7ae8d9d/simsopt-1.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fe1a636818e92652372f8a25f50c832e607291c2d80cf146b00ff9f4e0ef0186",
"md5": "4c8626cecdceddc02142a39bf673cbcc",
"sha256": "e8ae343656b5e4794c169104321d18b34abc48db814dddb7f31e2373375508ef"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "4c8626cecdceddc02142a39bf673cbcc",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1310726,
"upload_time": "2025-07-22T18:34:41",
"upload_time_iso_8601": "2025-07-22T18:34:41.715165Z",
"url": "https://files.pythonhosted.org/packages/fe/1a/636818e92652372f8a25f50c832e607291c2d80cf146b00ff9f4e0ef0186/simsopt-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a4d87398f04279fbcb6e52c9356904d177d297a56aea90125bb8fb6c4d85f2c5",
"md5": "370f51db9fed46e7eefa18fc59aab7cb",
"sha256": "9b185e1ed9d2b1add67f1fc966d083dddf9aab59d4ddbc2164e482399cd97cd3"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "370f51db9fed46e7eefa18fc59aab7cb",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1179930,
"upload_time": "2025-07-22T18:34:42",
"upload_time_iso_8601": "2025-07-22T18:34:42.932280Z",
"url": "https://files.pythonhosted.org/packages/a4/d8/7398f04279fbcb6e52c9356904d177d297a56aea90125bb8fb6c4d85f2c5/simsopt-1.10.1-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "94caeca984ef60eca9505a4a97c5fb27a6afa33b1baaabf88120729b8acc49e1",
"md5": "8b9df4cf31021fbd7cc417ca683dbbf0",
"sha256": "db5a1af56560a9b581e32b86daa40a834bdcdd3866397b64102d41b51b5b9fa2"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "8b9df4cf31021fbd7cc417ca683dbbf0",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1286585,
"upload_time": "2025-07-22T18:34:43",
"upload_time_iso_8601": "2025-07-22T18:34:43.952257Z",
"url": "https://files.pythonhosted.org/packages/94/ca/eca984ef60eca9505a4a97c5fb27a6afa33b1baaabf88120729b8acc49e1/simsopt-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5812a4fdd86f4a0a0f555307abc2251688e4473c35ada00b020a80007c13edd7",
"md5": "625db3973b2dce48b6e3f53933f9a481",
"sha256": "bfccb74acbdc9ad4405c2bb973449f24190bd298d8cb7f4e3f8cda27e79b7b08"
},
"downloads": -1,
"filename": "simsopt-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "625db3973b2dce48b6e3f53933f9a481",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1411613,
"upload_time": "2025-07-22T18:34:44",
"upload_time_iso_8601": "2025-07-22T18:34:44.965477Z",
"url": "https://files.pythonhosted.org/packages/58/12/a4fdd86f4a0a0f555307abc2251688e4473c35ada00b020a80007c13edd7/simsopt-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d7d529b448ddbe0819c99c093bbd21bfb32cccb80e05af806c7e14461324879d",
"md5": "ee4ca18b8a413b5bed86db4cde1d88b7",
"sha256": "24530402363cbd977f3d1c565f4e82732d019f90102954e737327b8216ec5cf1"
},
"downloads": -1,
"filename": "simsopt-1.10.1.tar.gz",
"has_sig": false,
"md5_digest": "ee4ca18b8a413b5bed86db4cde1d88b7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 23627420,
"upload_time": "2025-07-22T18:34:46",
"upload_time_iso_8601": "2025-07-22T18:34:46.663518Z",
"url": "https://files.pythonhosted.org/packages/d7/d5/29b448ddbe0819c99c093bbd21bfb32cccb80e05af806c7e14461324879d/simsopt-1.10.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-22 18:34:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hiddenSymmetries",
"github_project": "simsopt",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [
{
"name": "setuptools_scm",
"specs": [
[
">=",
"6.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.21.0"
]
]
},
{
"name": "jax",
"specs": [
[
">=",
"0.2.5"
]
]
},
{
"name": "jaxlib",
"specs": [
[
">=",
"0.1.56"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.5.4"
]
]
},
{
"name": "Deprecated",
"specs": [
[
">=",
"1.2.10"
]
]
},
{
"name": "nptyping",
"specs": [
[
">=",
"1.3.0"
]
]
},
{
"name": "monty",
"specs": [
[
">=",
"2021.6.10"
]
]
},
{
"name": "ruamel.yaml",
"specs": []
},
{
"name": "sympy",
"specs": []
},
{
"name": "f90nml",
"specs": []
},
{
"name": "pyevtk",
"specs": []
}
],
"tox": true,
"lcname": "simsopt"
}