<p align="center">
<a href="https://github.com/QianyeSu/Skyborn" target="_blank">
<img src="docs/source/_static/SkyBornLogo.svg" alt="Skyborn Logo" width="400"/>
</a>
</p>
[](https://badge.fury.io/py/skyborn)
[](https://pypi.org/project/skyborn/)
[](https://pypi.org/project/skyborn/)
[](https://codecov.io/gh/QianyeSu/Skyborn)
[](https://github.com/QianyeSu/Skyborn/blob/main/LICENSE)
[](https://github.com/QianyeSu/Skyborn/actions/workflows/stable-ci.yml)
[](https://github.com/QianyeSu/Skyborn)
[](https://github.com/psf/black)
[](https://github.com/QianyeSu/Skyborn/actions/workflows/test-coverage.yml?query=branch%3Amain)
[](https://skyborn.readthedocs.io/en/latest/)
## System Requirements
**Operating System:** 🖥️ **Cross-Platform**
This package supports Windows, Linux, and macOS. However, it has been primarily developed and tested on Windows.
**Note:** While the package can be installed on different platforms, some Windows-specific features may not work on other operating systems.
## Installation
To install the Skyborn package, you can use pip:
```bash
pip install skyborn
```
or
```bash
pip install -U --index-url https://pypi.org/simple/ skyborn
```
## 📚 Documentation
**Full documentation is available at: [Documentation ](https://skyborn.readthedocs.io/en/latest/)**
## 🎯 Key Features & Submodules
### 📊 Spatial Trend Analysis & Climate Index Regression
Skyborn provides ultra-fast spatial trend calculation and climate index regression analysis for atmospheric data:

**Key Capabilities:**
- **High-Speed Spatial Trends**: Calculate long-term climate trends across global grids
- Linear trend analysis for temperature, precipitation, and other variables
- Statistical significance testing
- Vectorized operations for massive datasets
- **Climate Index Regression**: Rapid correlation and regression analysis with climate indices
- NINO 3.4, PDO, NAO, AMO index integration
- Pattern correlation analysis
- Teleconnection mapping
**Other Applications:**
- Climate change signal detection
- Decadal variability analysis
- Teleconnection pattern identification
- Regional climate impact assessment
### 🌍 Skyborn Windspharm Submodule - Atmospheric Analysis
The Skyborn `windspharm` submodule provides powerful tools for analyzing global wind patterns through **streamfunction** and **velocity potential** calculations:

**Key Capabilities:**
- **Streamfunction Analysis**: Identifies rotational (non-divergent) wind components
- Visualizes atmospheric circulation patterns
- Reveals jet streams and vortices
- Essential for understanding weather systems
- **Velocity Potential Analysis**: Captures divergent wind components
- Shows areas of convergence and divergence
- Critical for tropical meteorology
- Identifies monsoon circulation patterns
**Applications:**
- Climate dynamics research
- Weather pattern analysis
- Atmospheric wave propagation studies
- Tropical cyclone formation analysis
### 🔧 Skyborn Gridfill Submodule - Data Interpolation
The Skyborn `gridfill` submodule provides advanced interpolation techniques for filling missing data in atmospheric and climate datasets:

**Key Features:**
- **Poisson-based Interpolation**: Physically consistent gap filling
- **Preserves Data Patterns**: Maintains spatial correlations and gradients
- **Multiple Methods Available**:
- Basic Poisson solver
- High-precision iterative refinement
- Zonal initialization options
- Relaxation parameter tuning
**Applications:**
- Satellite data gap filling
- Model output post-processing
- Climate data reanalysis
- Quality control for observational datasets
The example above demonstrates filling gaps in global precipitation data, where the algorithm successfully reconstructs missing values while preserving the underlying meteorological patterns.
## Performance Benchmarks
### 🚀 Windspharm Performance
The Skyborn `windspharm` submodule delivers **~25% performance improvement** over standard implementations through modernized Fortran code and optimized algorithms:

**Key Performance Metrics:**
- **Vorticity Calculation**: ~25% faster
- **Divergence Calculation**: ~25% faster
- **Helmholtz Decomposition**: ~25% faster
- **Streamfunction/Velocity Potential**: ~25% faster
### ⚡ GPI Module Performance
The Genesis Potential Index (GPI) module achieves **dramatic speedups** through vectorized Fortran implementation and native 3D processing:

**Performance Highlights:**
- **19-25x faster** than point-by-point implementations
- Processes entire atmospheric grids in seconds
- Native multi-dimensional support (3D/4D data)

**Accuracy Validation:**
- Correlation coefficient > 0.99 with reference implementations
- RMSE < 1% for both VMAX and PMIN calculations

Raw data
{
"_id": null,
"home_page": null,
"name": "skyborn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "atmospheric-science, meteorology, climate, data-analysis, grib, netcdf",
"author": null,
"author_email": "Qianye Su <suqianye2000@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/a2/df/18b261119105547385b91b2fba145829809b199be01eb38b0d3ead391381/skyborn-0.3.15.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <a href=\"https://github.com/QianyeSu/Skyborn\" target=\"_blank\">\n <img src=\"docs/source/_static/SkyBornLogo.svg\" alt=\"Skyborn Logo\" width=\"400\"/>\n </a>\n</p>\n\n[](https://badge.fury.io/py/skyborn)\n[](https://pypi.org/project/skyborn/)\n[](https://pypi.org/project/skyborn/)\n[](https://codecov.io/gh/QianyeSu/Skyborn)\n[](https://github.com/QianyeSu/Skyborn/blob/main/LICENSE)\n[](https://github.com/QianyeSu/Skyborn/actions/workflows/stable-ci.yml)\n[](https://github.com/QianyeSu/Skyborn)\n[](https://github.com/psf/black)\n[](https://github.com/QianyeSu/Skyborn/actions/workflows/test-coverage.yml?query=branch%3Amain)\n[](https://skyborn.readthedocs.io/en/latest/)\n## System Requirements\n\n**Operating System:** \ud83d\udda5\ufe0f **Cross-Platform**\n\nThis package supports Windows, Linux, and macOS. However, it has been primarily developed and tested on Windows.\n\n**Note:** While the package can be installed on different platforms, some Windows-specific features may not work on other operating systems.\n\n## Installation\n\nTo install the Skyborn package, you can use pip:\n\n```bash\npip install skyborn\n```\nor\n\n```bash\npip install -U --index-url https://pypi.org/simple/ skyborn\n```\n\n## \ud83d\udcda Documentation\n\n**Full documentation is available at: [Documentation ](https://skyborn.readthedocs.io/en/latest/)**\n\n\n\n## \ud83c\udfaf Key Features & Submodules\n\n### \ud83d\udcca Spatial Trend Analysis & Climate Index Regression\n\nSkyborn provides ultra-fast spatial trend calculation and climate index regression analysis for atmospheric data:\n\n\n\n**Key Capabilities:**\n- **High-Speed Spatial Trends**: Calculate long-term climate trends across global grids\n - Linear trend analysis for temperature, precipitation, and other variables\n - Statistical significance testing\n - Vectorized operations for massive datasets\n\n- **Climate Index Regression**: Rapid correlation and regression analysis with climate indices\n - NINO 3.4, PDO, NAO, AMO index integration\n - Pattern correlation analysis\n - Teleconnection mapping\n\n**Other Applications:**\n- Climate change signal detection\n- Decadal variability analysis\n- Teleconnection pattern identification\n- Regional climate impact assessment\n\n### \ud83c\udf0d Skyborn Windspharm Submodule - Atmospheric Analysis\n\nThe Skyborn `windspharm` submodule provides powerful tools for analyzing global wind patterns through **streamfunction** and **velocity potential** calculations:\n\n\n\n**Key Capabilities:**\n- **Streamfunction Analysis**: Identifies rotational (non-divergent) wind components\n - Visualizes atmospheric circulation patterns\n - Reveals jet streams and vortices\n - Essential for understanding weather systems\n\n- **Velocity Potential Analysis**: Captures divergent wind components\n - Shows areas of convergence and divergence\n - Critical for tropical meteorology\n - Identifies monsoon circulation patterns\n\n**Applications:**\n- Climate dynamics research\n- Weather pattern analysis\n- Atmospheric wave propagation studies\n- Tropical cyclone formation analysis\n\n### \ud83d\udd27 Skyborn Gridfill Submodule - Data Interpolation\n\nThe Skyborn `gridfill` submodule provides advanced interpolation techniques for filling missing data in atmospheric and climate datasets:\n\n\n\n**Key Features:**\n- **Poisson-based Interpolation**: Physically consistent gap filling\n- **Preserves Data Patterns**: Maintains spatial correlations and gradients\n- **Multiple Methods Available**:\n - Basic Poisson solver\n - High-precision iterative refinement\n - Zonal initialization options\n - Relaxation parameter tuning\n\n**Applications:**\n- Satellite data gap filling\n- Model output post-processing\n- Climate data reanalysis\n- Quality control for observational datasets\n\nThe example above demonstrates filling gaps in global precipitation data, where the algorithm successfully reconstructs missing values while preserving the underlying meteorological patterns.\n\n## Performance Benchmarks\n\n### \ud83d\ude80 Windspharm Performance\n\nThe Skyborn `windspharm` submodule delivers **~25% performance improvement** over standard implementations through modernized Fortran code and optimized algorithms:\n\n\n\n**Key Performance Metrics:**\n- **Vorticity Calculation**: ~25% faster\n- **Divergence Calculation**: ~25% faster\n- **Helmholtz Decomposition**: ~25% faster\n- **Streamfunction/Velocity Potential**: ~25% faster\n\n### \u26a1 GPI Module Performance\n\nThe Genesis Potential Index (GPI) module achieves **dramatic speedups** through vectorized Fortran implementation and native 3D processing:\n\n\n\n**Performance Highlights:**\n- **19-25x faster** than point-by-point implementations\n- Processes entire atmospheric grids in seconds\n- Native multi-dimensional support (3D/4D data)\n\n\n\n**Accuracy Validation:**\n- Correlation coefficient > 0.99 with reference implementations\n- RMSE < 1% for both VMAX and PMIN calculations\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Atmospheric science research utilities",
"version": "0.3.15",
"project_urls": {
"Bug Tracker": "https://github.com/QianyeSu/Skyborn/issues",
"Documentation": "https://skyborn.readthedocs.io/",
"Homepage": "https://github.com/QianyeSu/Skyborn",
"Repository": "https://github.com/QianyeSu/Skyborn"
},
"split_keywords": [
"atmospheric-science",
" meteorology",
" climate",
" data-analysis",
" grib",
" netcdf"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "fafc46356766934df9c9e2cbc62d0167030d6607b840377e426dddb009ca0c29",
"md5": "0226ec5c942f4a8f784e472b166441e5",
"sha256": "d9f37c80d398e77fc64c2c20b7c68f7d72abe81f147e98824b457356adbf153a"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp310-cp310-macosx_13_0_x86_64.whl",
"has_sig": false,
"md5_digest": "0226ec5c942f4a8f784e472b166441e5",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 3361321,
"upload_time": "2025-10-29T14:47:40",
"upload_time_iso_8601": "2025-10-29T14:47:40.225525Z",
"url": "https://files.pythonhosted.org/packages/fa/fc/46356766934df9c9e2cbc62d0167030d6607b840377e426dddb009ca0c29/skyborn-0.3.15-cp310-cp310-macosx_13_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e79c662340eab5d1d42719e90203d666b7f8b715ce661af26509c750165f7437",
"md5": "1681a81c43fee9f44d2a851215d8e452",
"sha256": "1abff75517d15ebcac3b9675da98888373c6d2e2685f68053bac8918f6aaf2bb"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp310-cp310-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "1681a81c43fee9f44d2a851215d8e452",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 1968733,
"upload_time": "2025-10-29T14:47:41",
"upload_time_iso_8601": "2025-10-29T14:47:41.523747Z",
"url": "https://files.pythonhosted.org/packages/e7/9c/662340eab5d1d42719e90203d666b7f8b715ce661af26509c750165f7437/skyborn-0.3.15-cp310-cp310-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "eeb525fbfdebf7d1c686b356d4eb87f73bb8e0c8cbab99bf2db2586b21e9f514",
"md5": "18f883f6d24b4a10cc778a522a40183f",
"sha256": "8e2156258c3171fd5e5ffc54870e18f441bbcefdb61c26af2345b97659adb768"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "18f883f6d24b4a10cc778a522a40183f",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 2083628,
"upload_time": "2025-10-29T14:47:42",
"upload_time_iso_8601": "2025-10-29T14:47:42.930328Z",
"url": "https://files.pythonhosted.org/packages/ee/b5/25fbfdebf7d1c686b356d4eb87f73bb8e0c8cbab99bf2db2586b21e9f514/skyborn-0.3.15-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2d7fe3ab8e13d70000b4b6af90cf009ec0ddf332a9ed30226e6f22f24286f87d",
"md5": "b5b397715e2d09d07438e037a17605c5",
"sha256": "2b6b7261a4abc07114b3ab50e190d03ce1f74b9493cafc941e3870f7f213ef10"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "b5b397715e2d09d07438e037a17605c5",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 3026463,
"upload_time": "2025-10-29T14:47:44",
"upload_time_iso_8601": "2025-10-29T14:47:44.332444Z",
"url": "https://files.pythonhosted.org/packages/2d/7f/e3ab8e13d70000b4b6af90cf009ec0ddf332a9ed30226e6f22f24286f87d/skyborn-0.3.15-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c61548124136ef76f1ba13264563b4a3aefd4947a6e3ea6887e850999c225898",
"md5": "8c519b4a39071ef897128eff6a89dedb",
"sha256": "3e7b761091f913abcb871be0ad9db5fa14f3c6d08e40302f2eba53c1623779d7"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp311-cp311-macosx_13_0_x86_64.whl",
"has_sig": false,
"md5_digest": "8c519b4a39071ef897128eff6a89dedb",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 3392454,
"upload_time": "2025-10-29T14:47:45",
"upload_time_iso_8601": "2025-10-29T14:47:45.558264Z",
"url": "https://files.pythonhosted.org/packages/c6/15/48124136ef76f1ba13264563b4a3aefd4947a6e3ea6887e850999c225898/skyborn-0.3.15-cp311-cp311-macosx_13_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "536791e701f2d7af18c78fc34c9bb07c48e6f6c1d2ca5d03abc1a2b866ea7294",
"md5": "00a7e918b2032edede9bd8c133f45994",
"sha256": "01c740a6d76db7769ce19783962200a2e2f0953e64aaba32d4362951deaa0534"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp311-cp311-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "00a7e918b2032edede9bd8c133f45994",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 1995247,
"upload_time": "2025-10-29T14:47:46",
"upload_time_iso_8601": "2025-10-29T14:47:46.669237Z",
"url": "https://files.pythonhosted.org/packages/53/67/91e701f2d7af18c78fc34c9bb07c48e6f6c1d2ca5d03abc1a2b866ea7294/skyborn-0.3.15-cp311-cp311-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "22feec869deabb33abdd99bca4e080b349b48194f922c83ad17242fd151acdb7",
"md5": "331ea71a83249b3905939415c3ecb5dd",
"sha256": "ae1ab4071e883a4eba242569efc12ccccef79fc6948d493c766c0b8e29c3fc83"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "331ea71a83249b3905939415c3ecb5dd",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 2115333,
"upload_time": "2025-10-29T14:47:48",
"upload_time_iso_8601": "2025-10-29T14:47:48.026756Z",
"url": "https://files.pythonhosted.org/packages/22/fe/ec869deabb33abdd99bca4e080b349b48194f922c83ad17242fd151acdb7/skyborn-0.3.15-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3df401ff324f0be3aa3edf6c93e939633c3b73cded8000626a9f79975e695984",
"md5": "851b52108c7b8e0e6d80246faa1d226f",
"sha256": "edc13e4a0e4b3488c7d2ffb3742ace17c2ba9a512e8de8b09cd13eda22ad3993"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "851b52108c7b8e0e6d80246faa1d226f",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 3061598,
"upload_time": "2025-10-29T14:47:49",
"upload_time_iso_8601": "2025-10-29T14:47:49.021934Z",
"url": "https://files.pythonhosted.org/packages/3d/f4/01ff324f0be3aa3edf6c93e939633c3b73cded8000626a9f79975e695984/skyborn-0.3.15-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "77652ce56c3a277078f57fee28dbad9adb3b2bbcddbd15c12290a32115fb56fc",
"md5": "4cd154b51e4efd798bbe0d4133b5ac72",
"sha256": "6da835a8d6436597e0bd7bc7ea45eab1aae84becc5f7fa779cb353244db0c5dd"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp312-cp312-macosx_13_0_x86_64.whl",
"has_sig": false,
"md5_digest": "4cd154b51e4efd798bbe0d4133b5ac72",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 3392816,
"upload_time": "2025-10-29T14:47:50",
"upload_time_iso_8601": "2025-10-29T14:47:50.131153Z",
"url": "https://files.pythonhosted.org/packages/77/65/2ce56c3a277078f57fee28dbad9adb3b2bbcddbd15c12290a32115fb56fc/skyborn-0.3.15-cp312-cp312-macosx_13_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0b3215934c64425e3571a519458a060d60083f6675bcf6796e0907630f3cf061",
"md5": "14bcbcd78ef1f8bf501c429535690a5e",
"sha256": "fd84d7d9abdde367e2c356b1e1a632ae75d66321fb663c55c633e31f5bc2d2c1"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp312-cp312-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "14bcbcd78ef1f8bf501c429535690a5e",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 1990633,
"upload_time": "2025-10-29T14:47:51",
"upload_time_iso_8601": "2025-10-29T14:47:51.328470Z",
"url": "https://files.pythonhosted.org/packages/0b/32/15934c64425e3571a519458a060d60083f6675bcf6796e0907630f3cf061/skyborn-0.3.15-cp312-cp312-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "849cacf61f85c54a934c9b91663f177c4691e26a95f1aecc8f56308d2c926c1c",
"md5": "cb3cee60e27a9de8da67b16ebfaa988a",
"sha256": "e968b0f0bdf0cefbc1515984daa170b609ab05b2364b0315540f0050ffe0a967"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "cb3cee60e27a9de8da67b16ebfaa988a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 2119145,
"upload_time": "2025-10-29T14:47:52",
"upload_time_iso_8601": "2025-10-29T14:47:52.361961Z",
"url": "https://files.pythonhosted.org/packages/84/9c/acf61f85c54a934c9b91663f177c4691e26a95f1aecc8f56308d2c926c1c/skyborn-0.3.15-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "37d44861edfa3238de9e67b905cf9761d85c093a8d34fa0cf3fb6aef0361aa20",
"md5": "f07d88307a66185a0d1c20f24d371487",
"sha256": "572f959f44257a0011dfe03e27fc5cde590f7bc3096ad15a7199a03e06322392"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "f07d88307a66185a0d1c20f24d371487",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 3063570,
"upload_time": "2025-10-29T14:47:53",
"upload_time_iso_8601": "2025-10-29T14:47:53.908565Z",
"url": "https://files.pythonhosted.org/packages/37/d4/4861edfa3238de9e67b905cf9761d85c093a8d34fa0cf3fb6aef0361aa20/skyborn-0.3.15-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "30263abe2530327cfe71e4dd90651d82e465f22b52eb61a60ec6dff4746fb39c",
"md5": "ea008ee2524487ec8720736d44f3bf07",
"sha256": "7c70e675fb94ecbe731ee358d44d440cc26995a418972085491e73b3ca4df0fc"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp313-cp313-macosx_13_0_x86_64.whl",
"has_sig": false,
"md5_digest": "ea008ee2524487ec8720736d44f3bf07",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 3392535,
"upload_time": "2025-10-29T14:47:55",
"upload_time_iso_8601": "2025-10-29T14:47:55.036529Z",
"url": "https://files.pythonhosted.org/packages/30/26/3abe2530327cfe71e4dd90651d82e465f22b52eb61a60ec6dff4746fb39c/skyborn-0.3.15-cp313-cp313-macosx_13_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b417ecf35a39f6a8781c5d1c193773f4a21eb5416a6ac8d611fc632977648156",
"md5": "a4e2120a06f33289d5fdfb806755ae8b",
"sha256": "548a26515878b98cec4e9ea0445cd3ba97d42cd2d9515368602165adc9ca3be1"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp313-cp313-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "a4e2120a06f33289d5fdfb806755ae8b",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 1990687,
"upload_time": "2025-10-29T14:47:56",
"upload_time_iso_8601": "2025-10-29T14:47:56.522017Z",
"url": "https://files.pythonhosted.org/packages/b4/17/ecf35a39f6a8781c5d1c193773f4a21eb5416a6ac8d611fc632977648156/skyborn-0.3.15-cp313-cp313-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "92a1dd917eeff8b01ad0ad71190f9005a4db79bf8893688ec090d485ecc83063",
"md5": "87d080df4eacd65877b748537daa7d93",
"sha256": "e42ad65720b02bb975cf59a91febb5e0e99bfe07b46d14280a9bd3aa3a75962c"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "87d080df4eacd65877b748537daa7d93",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 2119479,
"upload_time": "2025-10-29T14:47:57",
"upload_time_iso_8601": "2025-10-29T14:47:57.600325Z",
"url": "https://files.pythonhosted.org/packages/92/a1/dd917eeff8b01ad0ad71190f9005a4db79bf8893688ec090d485ecc83063/skyborn-0.3.15-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "15119d20e939b8ea22e1e7612fe166802c96e32a53e6378136b61a90b92e51fb",
"md5": "40d94bcb4bc51271604674d19a8c59ef",
"sha256": "747ae4c20793c71de69420afe715ad763308f2e3c2e23b3c74bcefbbefcfb48f"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "40d94bcb4bc51271604674d19a8c59ef",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 3060958,
"upload_time": "2025-10-29T14:47:58",
"upload_time_iso_8601": "2025-10-29T14:47:58.980002Z",
"url": "https://files.pythonhosted.org/packages/15/11/9d20e939b8ea22e1e7612fe166802c96e32a53e6378136b61a90b92e51fb/skyborn-0.3.15-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c196ae8597bfd6eba39ed41d68f8ae17011d27156fbdf552d4a816781c0d6d37",
"md5": "fcb8c05de55fea3f64e6f49458badf97",
"sha256": "2ce5c4299cd8d3747e8bfa00877782f6f23b744308157b7495a3f79fe49714a2"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp39-cp39-macosx_13_0_x86_64.whl",
"has_sig": false,
"md5_digest": "fcb8c05de55fea3f64e6f49458badf97",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 3360347,
"upload_time": "2025-10-29T14:48:00",
"upload_time_iso_8601": "2025-10-29T14:48:00.350804Z",
"url": "https://files.pythonhosted.org/packages/c1/96/ae8597bfd6eba39ed41d68f8ae17011d27156fbdf552d4a816781c0d6d37/skyborn-0.3.15-cp39-cp39-macosx_13_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ed4b8904393e1ce1a179a80f3530445a2901044283b0bdd9b1fb1409beefb2c3",
"md5": "8a22004a7f3bb8656e939d248cdd555a",
"sha256": "b70bed8e6704a48e9446f4a8b40357ebc71526a8717602965bb422770a6b8f2d"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp39-cp39-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "8a22004a7f3bb8656e939d248cdd555a",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 1968359,
"upload_time": "2025-10-29T14:48:01",
"upload_time_iso_8601": "2025-10-29T14:48:01.415670Z",
"url": "https://files.pythonhosted.org/packages/ed/4b/8904393e1ce1a179a80f3530445a2901044283b0bdd9b1fb1409beefb2c3/skyborn-0.3.15-cp39-cp39-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0688c007b82fc329f44ee38b23aae3bae5f2421f16812c513a80f6b3d457682d",
"md5": "37332f544e32c6d76bc4227338538dd5",
"sha256": "5ed5633d71d578200d5be32c53088e053f8d04814e9298dbb694aecc705dcf71"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "37332f544e32c6d76bc4227338538dd5",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 2082369,
"upload_time": "2025-10-29T14:48:02",
"upload_time_iso_8601": "2025-10-29T14:48:02.866706Z",
"url": "https://files.pythonhosted.org/packages/06/88/c007b82fc329f44ee38b23aae3bae5f2421f16812c513a80f6b3d457682d/skyborn-0.3.15-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c0b50d25cf75ca5aa16934a60b64cef5d31ba8724f119911fb8a63e5ad0746bf",
"md5": "749b937727e4ccc8cd29527cb7d5201d",
"sha256": "26894fdb3ae8b0afbb8b7860c7086c516dae2c19d7ea1fbf1106140f07071247"
},
"downloads": -1,
"filename": "skyborn-0.3.15-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "749b937727e4ccc8cd29527cb7d5201d",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 3025993,
"upload_time": "2025-10-29T14:48:04",
"upload_time_iso_8601": "2025-10-29T14:48:04.005673Z",
"url": "https://files.pythonhosted.org/packages/c0/b5/0d25cf75ca5aa16934a60b64cef5d31ba8724f119911fb8a63e5ad0746bf/skyborn-0.3.15-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a2df18b261119105547385b91b2fba145829809b199be01eb38b0d3ead391381",
"md5": "8c09b830d6bb633c1fa401d77b819f2f",
"sha256": "d4433d5a78ea4000e4dafb4ed4edb5f51897604337bdae7b8199087144a1b6c3"
},
"downloads": -1,
"filename": "skyborn-0.3.15.tar.gz",
"has_sig": false,
"md5_digest": "8c09b830d6bb633c1fa401d77b819f2f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 808894,
"upload_time": "2025-10-29T14:48:05",
"upload_time_iso_8601": "2025-10-29T14:48:05.113295Z",
"url": "https://files.pythonhosted.org/packages/a2/df/18b261119105547385b91b2fba145829809b199be01eb38b0d3ead391381/skyborn-0.3.15.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-29 14:48:05",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "QianyeSu",
"github_project": "Skyborn",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": []
},
{
"name": "xarray",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "seaborn",
"specs": []
},
{
"name": "cartopy",
"specs": []
},
{
"name": "netCDF4",
"specs": []
},
{
"name": "metpy",
"specs": []
},
{
"name": "tqdm",
"specs": []
},
{
"name": "statsmodels",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "cfgrib",
"specs": []
},
{
"name": "eccodes",
"specs": []
},
{
"name": "scikit-learn",
"specs": []
},
{
"name": "dask",
"specs": []
}
],
"test_requirements": [
{
"name": "pytest",
"specs": [
[
">=",
"7.0.0"
]
]
},
{
"name": "pytest-cov",
"specs": [
[
">=",
"4.0.0"
]
]
},
{
"name": "pytest-xdist",
"specs": [
[
">=",
"3.0.0"
]
]
},
{
"name": "pytest-benchmark",
"specs": [
[
">=",
"4.0.0"
]
]
},
{
"name": "coverage",
"specs": [
[
">=",
"7.0.0"
]
]
},
{
"name": "flake8",
"specs": [
[
">=",
"6.0.0"
]
]
},
{
"name": "black",
"specs": [
[
">=",
"23.0.0"
]
]
},
{
"name": "isort",
"specs": [
[
">=",
"5.12.0"
]
]
},
{
"name": "mypy",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "safety",
"specs": [
[
">=",
"2.3.0"
]
]
},
{
"name": "bandit",
"specs": [
[
">=",
"1.7.0"
]
]
},
{
"name": "pip-audit",
"specs": [
[
">=",
"2.6.0"
]
]
},
{
"name": "sphinx",
"specs": [
[
">=",
"5.0.0"
]
]
},
{
"name": "sphinx-rtd-theme",
"specs": [
[
">=",
"1.3.0"
]
]
},
{
"name": "myst-parser",
"specs": [
[
">=",
"2.0.0"
]
]
},
{
"name": "sphinx-autodoc-typehints",
"specs": [
[
">=",
"1.24.0"
]
]
},
{
"name": "eccodes",
"specs": []
},
{
"name": "memory-profiler",
"specs": [
[
">=",
"0.60.0"
]
]
},
{
"name": "build",
"specs": [
[
">=",
"0.10.0"
]
]
},
{
"name": "twine",
"specs": [
[
">=",
"4.0.0"
]
]
}
],
"lcname": "skyborn"
}