ssakg


Namessakg JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/PrzemyslawStok/ssakg
SummarySequential Structural Associative Knowledge Graph (ssakg)
upload_time2024-12-31 09:54:18
maintainerNone
docs_urlNone
authorPrzemysław Stokłosa
requires_python<=3.12,>=3.10
licenseApache 2.0
keywords semantic memory structural graphs graph density sequence storage sequence retrieval context based memory graph based memory mirna sequences
VCS
bugtrack_url
requirements numpy pandas tabulate PyPrind testify networkx matplotlib seaborn setuptools nltk
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SSAKG

Sequential Structural Associative Knowledge Graph (SSAKG) is a semantic memory.
It can memorize sequences and then read them using a context. 
The context contains random sequence elements. The elements of the context are not ordered.
## Requirements

- **Python Version:** 3.10-3.12
## Installation

Use the package manager [pip](https://pip.pypa.io/en/stable/) to install ssakg.

```bash
pip install ssakg
```

## Usage

```python
from ssakg import SSAKG

# This basic example creates very simple ssakg, and stores two sequences.
# The program shows how sequences are stored in Associative Knowledge Graph.

ssakg = SSAKG(number_of_symbols=10, sequence_length=3, graphs_to_drawing=True)
ssakg.insert([1, 2, 3])
ssakg.insert([2, 4, 5])
ssakg.show()
```

## Examples
Examples of the use of the program:

[Basics](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_basic.ipynb)\
[Reading sequences](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_reading.ipynb)  
[SSAKG memory](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_tests.ipynb)  

[miRNA example](https://github.com/PrzemyslawStok/ssakg/blob/main/microrna/mirna_example.ipynb)

## License

[Apache 2.0](LICENSE)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/PrzemyslawStok/ssakg",
    "name": "ssakg",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<=3.12,>=3.10",
    "maintainer_email": null,
    "keywords": "semantic memory, structural graphs, graph density, sequence storage, sequence retrieval, context based memory, graph based memory, mirna sequences",
    "author": "Przemys\u0142aw Stok\u0142osa",
    "author_email": "przemyslaw.stoklosa@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/77/9d/93614d6921cb21fde4c6a1f8f68794c27ce07f8bc50ff5fbd589423434db/ssakg-0.1.1.tar.gz",
    "platform": null,
    "description": "# SSAKG\n\nSequential Structural Associative Knowledge Graph (SSAKG) is a semantic memory.\nIt can memorize sequences and then read them using a context. \nThe context contains random sequence elements. The elements of the context are not ordered.\n## Requirements\n\n- **Python Version:** 3.10-3.12\n## Installation\n\nUse the package manager [pip](https://pip.pypa.io/en/stable/) to install ssakg.\n\n```bash\npip install ssakg\n```\n\n## Usage\n\n```python\nfrom ssakg import SSAKG\n\n# This basic example creates very simple ssakg, and stores two sequences.\n# The program shows how sequences are stored in Associative Knowledge Graph.\n\nssakg = SSAKG(number_of_symbols=10, sequence_length=3, graphs_to_drawing=True)\nssakg.insert([1, 2, 3])\nssakg.insert([2, 4, 5])\nssakg.show()\n```\n\n## Examples\nExamples of the use of the program:\n\n[Basics](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_basic.ipynb)\\\n[Reading sequences](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_reading.ipynb)  \n[SSAKG memory](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_tests.ipynb)  \n\n[miRNA example](https://github.com/PrzemyslawStok/ssakg/blob/main/microrna/mirna_example.ipynb)\n\n## License\n\n[Apache 2.0](LICENSE)\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Sequential Structural Associative Knowledge Graph (ssakg)",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/PrzemyslawStok/ssakg"
    },
    "split_keywords": [
        "semantic memory",
        " structural graphs",
        " graph density",
        " sequence storage",
        " sequence retrieval",
        " context based memory",
        " graph based memory",
        " mirna sequences"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "896ab0e6a692ebd612777e0f1702966e67339eb2af70af082ab4b077c05768e9",
                "md5": "ea0fcb12218b3875ce1d38945580ed9f",
                "sha256": "e62b577759b98a5c8d70f1000f6294f2a5817d5caaa9d9da00d0aa93192b7933"
            },
            "downloads": -1,
            "filename": "ssakg-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ea0fcb12218b3875ce1d38945580ed9f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<=3.12,>=3.10",
            "size": 20970,
            "upload_time": "2024-12-31T09:54:15",
            "upload_time_iso_8601": "2024-12-31T09:54:15.205907Z",
            "url": "https://files.pythonhosted.org/packages/89/6a/b0e6a692ebd612777e0f1702966e67339eb2af70af082ab4b077c05768e9/ssakg-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "779d93614d6921cb21fde4c6a1f8f68794c27ce07f8bc50ff5fbd589423434db",
                "md5": "5a87b73f8a4973420126f90087f727d8",
                "sha256": "fc3d9a8def9aac10baf66809624decb32bf7e4a153deda87e95a34573a83205b"
            },
            "downloads": -1,
            "filename": "ssakg-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "5a87b73f8a4973420126f90087f727d8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<=3.12,>=3.10",
            "size": 17569,
            "upload_time": "2024-12-31T09:54:18",
            "upload_time_iso_8601": "2024-12-31T09:54:18.506912Z",
            "url": "https://files.pythonhosted.org/packages/77/9d/93614d6921cb21fde4c6a1f8f68794c27ce07f8bc50ff5fbd589423434db/ssakg-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-31 09:54:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "PrzemyslawStok",
    "github_project": "ssakg",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "~=",
                    "2.1.3"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "~=",
                    "2.2.0"
                ]
            ]
        },
        {
            "name": "tabulate",
            "specs": [
                [
                    "~=",
                    "0.9.0"
                ]
            ]
        },
        {
            "name": "PyPrind",
            "specs": [
                [
                    "~=",
                    "2.11.3"
                ]
            ]
        },
        {
            "name": "testify",
            "specs": [
                [
                    "~=",
                    "0.11.3"
                ]
            ]
        },
        {
            "name": "networkx",
            "specs": [
                [
                    "~=",
                    "3.2.1"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "~=",
                    "3.8.2"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    "~=",
                    "0.13.2"
                ]
            ]
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    "~=",
                    "75.3.0"
                ]
            ]
        },
        {
            "name": "nltk",
            "specs": [
                [
                    "~=",
                    "3.9.1"
                ]
            ]
        }
    ],
    "lcname": "ssakg"
}
        
Elapsed time: 0.37960s