# SSAKG
Sequential Structural Associative Knowledge Graph (SSAKG) is a semantic memory.
It can memorize sequences and then read them using a context.
The context contains random sequence elements. The elements of the context are not ordered.
## Requirements
- **Python Version:** 3.10-3.12
## Installation
Use the package manager [pip](https://pip.pypa.io/en/stable/) to install ssakg.
```bash
pip install ssakg
```
## Usage
```python
from ssakg import SSAKG
# This basic example creates very simple ssakg, and stores two sequences.
# The program shows how sequences are stored in Associative Knowledge Graph.
ssakg = SSAKG(number_of_symbols=10, sequence_length=3, graphs_to_drawing=True)
ssakg.insert([1, 2, 3])
ssakg.insert([2, 4, 5])
ssakg.show()
```
## Examples
Examples of the use of the program:
[Basics](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_basic.ipynb)\
[Reading sequences](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_reading.ipynb)
[SSAKG memory](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_tests.ipynb)
[miRNA example](https://github.com/PrzemyslawStok/ssakg/blob/main/microrna/mirna_example.ipynb)
## License
[Apache 2.0](LICENSE)
Raw data
{
"_id": null,
"home_page": "https://github.com/PrzemyslawStok/ssakg",
"name": "ssakg",
"maintainer": null,
"docs_url": null,
"requires_python": "<=3.12,>=3.10",
"maintainer_email": null,
"keywords": "semantic memory, structural graphs, graph density, sequence storage, sequence retrieval, context based memory, graph based memory, mirna sequences",
"author": "Przemys\u0142aw Stok\u0142osa",
"author_email": "przemyslaw.stoklosa@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/77/9d/93614d6921cb21fde4c6a1f8f68794c27ce07f8bc50ff5fbd589423434db/ssakg-0.1.1.tar.gz",
"platform": null,
"description": "# SSAKG\n\nSequential Structural Associative Knowledge Graph (SSAKG) is a semantic memory.\nIt can memorize sequences and then read them using a context. \nThe context contains random sequence elements. The elements of the context are not ordered.\n## Requirements\n\n- **Python Version:** 3.10-3.12\n## Installation\n\nUse the package manager [pip](https://pip.pypa.io/en/stable/) to install ssakg.\n\n```bash\npip install ssakg\n```\n\n## Usage\n\n```python\nfrom ssakg import SSAKG\n\n# This basic example creates very simple ssakg, and stores two sequences.\n# The program shows how sequences are stored in Associative Knowledge Graph.\n\nssakg = SSAKG(number_of_symbols=10, sequence_length=3, graphs_to_drawing=True)\nssakg.insert([1, 2, 3])\nssakg.insert([2, 4, 5])\nssakg.show()\n```\n\n## Examples\nExamples of the use of the program:\n\n[Basics](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_basic.ipynb)\\\n[Reading sequences](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_reading.ipynb) \n[SSAKG memory](https://github.com/PrzemyslawStok/ssakg/blob/main/examples/ssakg_tests.ipynb) \n\n[miRNA example](https://github.com/PrzemyslawStok/ssakg/blob/main/microrna/mirna_example.ipynb)\n\n## License\n\n[Apache 2.0](LICENSE)\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "Sequential Structural Associative Knowledge Graph (ssakg)",
"version": "0.1.1",
"project_urls": {
"Homepage": "https://github.com/PrzemyslawStok/ssakg"
},
"split_keywords": [
"semantic memory",
" structural graphs",
" graph density",
" sequence storage",
" sequence retrieval",
" context based memory",
" graph based memory",
" mirna sequences"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "896ab0e6a692ebd612777e0f1702966e67339eb2af70af082ab4b077c05768e9",
"md5": "ea0fcb12218b3875ce1d38945580ed9f",
"sha256": "e62b577759b98a5c8d70f1000f6294f2a5817d5caaa9d9da00d0aa93192b7933"
},
"downloads": -1,
"filename": "ssakg-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ea0fcb12218b3875ce1d38945580ed9f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<=3.12,>=3.10",
"size": 20970,
"upload_time": "2024-12-31T09:54:15",
"upload_time_iso_8601": "2024-12-31T09:54:15.205907Z",
"url": "https://files.pythonhosted.org/packages/89/6a/b0e6a692ebd612777e0f1702966e67339eb2af70af082ab4b077c05768e9/ssakg-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "779d93614d6921cb21fde4c6a1f8f68794c27ce07f8bc50ff5fbd589423434db",
"md5": "5a87b73f8a4973420126f90087f727d8",
"sha256": "fc3d9a8def9aac10baf66809624decb32bf7e4a153deda87e95a34573a83205b"
},
"downloads": -1,
"filename": "ssakg-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "5a87b73f8a4973420126f90087f727d8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<=3.12,>=3.10",
"size": 17569,
"upload_time": "2024-12-31T09:54:18",
"upload_time_iso_8601": "2024-12-31T09:54:18.506912Z",
"url": "https://files.pythonhosted.org/packages/77/9d/93614d6921cb21fde4c6a1f8f68794c27ce07f8bc50ff5fbd589423434db/ssakg-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-31 09:54:18",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "PrzemyslawStok",
"github_project": "ssakg",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "numpy",
"specs": [
[
"~=",
"2.1.3"
]
]
},
{
"name": "pandas",
"specs": [
[
"~=",
"2.2.0"
]
]
},
{
"name": "tabulate",
"specs": [
[
"~=",
"0.9.0"
]
]
},
{
"name": "PyPrind",
"specs": [
[
"~=",
"2.11.3"
]
]
},
{
"name": "testify",
"specs": [
[
"~=",
"0.11.3"
]
]
},
{
"name": "networkx",
"specs": [
[
"~=",
"3.2.1"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"~=",
"3.8.2"
]
]
},
{
"name": "seaborn",
"specs": [
[
"~=",
"0.13.2"
]
]
},
{
"name": "setuptools",
"specs": [
[
"~=",
"75.3.0"
]
]
},
{
"name": "nltk",
"specs": [
[
"~=",
"3.9.1"
]
]
}
],
"lcname": "ssakg"
}