summit-multi-learn


Namesummit-multi-learn JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
SummarySupervised MultiModal Integration Tool
upload_time2025-07-11 18:20:42
maintainerNone
docs_urlNone
authorNone
requires_python>=3.6
licenseBSD-3-Clause
keywords machine learning supervised learning classification tool multiview learning monoview learning
VCS
bugtrack_url
requirements h5py joblib numpy pyparsing python-dateutil scikit-learn scipy six pandas pyyaml plotly matplotlib tabulate pyscm-ml imbalanced-learn scikit-multimodallearn randomscm
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. |pipeline| image:: https://gitlab.lis-lab.fr/baptiste.bauvin/summit/badges/master/pipeline.svg
    :alt: Pipeline status

.. |license| image:: https://img.shields.io/badge/License-New%20BSD-blue.svg
    :target: https://opensource.org/licenses/BSD-3-Clause
    :alt: License: New BSD

.. |coverage| image:: https://gitlab.lis-lab.fr/baptiste.bauvin/summit/badges/master/coverage.svg
    :target: http://baptiste.bauvin.pages.lis-lab.fr/summit/coverage/index.html
    :alt: Coverage

|pipeline| |license| |coverage|




Supervised MultiModal Integration Tool's Readme
===============================================

This project aims to be an easy-to-use solution to run a prior benchmark on a dataset and evaluate mono- & multi-view algorithms capacity to classify it correctly.

Getting Started
---------------

SuMMIT has been designed and uses continuous integration for Linux platforms (ubuntu 18.04), but we try to keep it as compatible as possible with Mac and Windows.

+----------+-------------------+
| Platform | Last positive test|
+==========+===================+
|   Linux  |  |pipeline|       |
+----------+-------------------+
| Mac      | 1st of May, 2020  |
+----------+-------------------+
| Windows  | 1st of May, 2020  |
+----------+-------------------+


Prerequisites
<<<<<<<<<<<<<

To be able to use this project, you'll need :

* `Python 3 <https://docs.python.org/3/>`_

And the following python modules will be automatically installed  :

* `numpy <http://www.numpy.org/>`_, `scipy <https://scipy.org/>`_,
* `matplotlib <http://matplotlib.org/>`_ - Used to plot results,
* `sklearn <http://scikit-learn.org/stable/>`_ - Used for the monoview classifiers,
* `joblib <https://pypi.python.org/pypi/joblib>`_ - Used to compute on multiple threads,
* `h5py <https://www.h5py.org>`_ - Used to generate HDF5 datasets on hard drive and use them to spare RAM,
* `pickle <https://docs.python.org/3/library/pickle.html>`_ - Used to store some results,
* `pandas <https://pandas.pydata.org/>`_ - Used to manipulate data efficiently,
* `six <https://pypi.org/project/six/>`_ -
* `m2r <https://pypi.org/project/m2r/>`_ - Used to generate documentation from the readme,
* `docutils <https://pypi.org/project/docutils/>`_ - Used to generate documentation,
* `pyyaml <https://pypi.org/project/PyYAML/>`_ - Used to read the config files,
* `plotly <https://plot.ly/>`_ - Used to generate interactive HTML visuals,
* `tabulate <https://pypi.org/project/tabulate/>`_ - Used to generated the confusion matrix.
* `pyscm-ml <https://pypi.org/project/pyscm-ml/>`_ - 


Installing
<<<<<<<<<<

Once you cloned the project from the `github repository <https://github.com/multi-learn/summit/>`_, you just have to use :

.. code:: bash

    cd path/to/summit/
    pip install -e .


In the `summit` directory to install SuMMIT and its dependencies.

Running the tests
<<<<<<<<<<<<<<<<<

To run the test suite of SuMMIT, run :

.. code:: bash

    cd path/to/summit
    pip install -e .[dev]
    pytest

The coverage report is automatically generated and stored in the ``htmlcov/`` directory

Building the documentation
<<<<<<<<<<<<<<<<<<<<<<<<<<

To locally build the `github-documentation <https://multi-learn.github.io/summit/index.html>`_ run :

.. code:: bash

    cd path/to/summit
    pip install -e .[doc]
    python setup.py build_sphinx

The built html files will be stored in ``path/to/summit/build/sphinx/html``

Running on simulated data
<<<<<<<<<<<<<<<<<<<<<<<<<

For your first go with SuMMIT, you can run it on simulated data with

.. code:: bash

    python
    >>> from summit.execute import execute
    >>> execute("example 1")

This will run the benchmark of `documentation's Example 1 <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/example1.html>`_.

For more information about the examples, see the `documentation <http://baptiste.bauvin.pages.lis-lab.fr/summit/index.html>`_.
Results will, by default, be stored in the results directory of the installation path :
``path/to/summit/multiview_platform/examples/results``.

The documentation proposes a detailed interpretation of the results and arguments of SuMMIT through `6 tutorials <http://baptiste.bauvin.pages.lis-lab.fr/summit/>`_.

Dataset compatibility
<<<<<<<<<<<<<<<<<<<<<

In order to start a benchmark on your own dataset, you need to format it so SuMMIT can use it. To do so, a `python script <https://gitlab.lis-lab.fr/baptiste.bauvin/summit/-/blob/master/format_dataset.py>`_ is provided.

For more information, see `Example 5 <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/example5.html>`_

Running on your dataset
+++++++++++++++++++++++

Once you have formatted your dataset, to run SuMMIT on it you need to modify the config file as

.. code:: yaml

    name: ["your_file_name"]
    pathf: "path/to/your/dataset"


It is however highly recommended to follow the documentation's `tutorials <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/index.html>`_ to learn the use of each parameter.
 

Authors
-------

* **Baptiste BAUVIN**
* **Dominique BENIELLI**
* **Alexis PROD'HOMME**


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "summit-multi-learn",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "machine learning, supervised learning, classification, tool, multiview learning, monoview learning",
    "author": null,
    "author_email": "Baptiste Bauvin <baptiste.bauvin.work@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/31/9d/c72f54fa4366c8c53064df0559469d2adad27062629f96f0f262924cc855/summit_multi_learn-0.0.2.tar.gz",
    "platform": null,
    "description": ".. |pipeline| image:: https://gitlab.lis-lab.fr/baptiste.bauvin/summit/badges/master/pipeline.svg\n    :alt: Pipeline status\n\n.. |license| image:: https://img.shields.io/badge/License-New%20BSD-blue.svg\n    :target: https://opensource.org/licenses/BSD-3-Clause\n    :alt: License: New BSD\n\n.. |coverage| image:: https://gitlab.lis-lab.fr/baptiste.bauvin/summit/badges/master/coverage.svg\n    :target: http://baptiste.bauvin.pages.lis-lab.fr/summit/coverage/index.html\n    :alt: Coverage\n\n|pipeline| |license| |coverage|\n\n\n\n\nSupervised MultiModal Integration Tool's Readme\n===============================================\n\nThis project aims to be an easy-to-use solution to run a prior benchmark on a dataset and evaluate mono- & multi-view algorithms capacity to classify it correctly.\n\nGetting Started\n---------------\n\nSuMMIT has been designed and uses continuous integration for Linux platforms (ubuntu 18.04), but we try to keep it as compatible as possible with Mac and Windows.\n\n+----------+-------------------+\n| Platform | Last positive test|\n+==========+===================+\n|   Linux  |  |pipeline|       |\n+----------+-------------------+\n| Mac      | 1st of May, 2020  |\n+----------+-------------------+\n| Windows  | 1st of May, 2020  |\n+----------+-------------------+\n\n\nPrerequisites\n<<<<<<<<<<<<<\n\nTo be able to use this project, you'll need :\n\n* `Python 3 <https://docs.python.org/3/>`_\n\nAnd the following python modules will be automatically installed  :\n\n* `numpy <http://www.numpy.org/>`_, `scipy <https://scipy.org/>`_,\n* `matplotlib <http://matplotlib.org/>`_ - Used to plot results,\n* `sklearn <http://scikit-learn.org/stable/>`_ - Used for the monoview classifiers,\n* `joblib <https://pypi.python.org/pypi/joblib>`_ - Used to compute on multiple threads,\n* `h5py <https://www.h5py.org>`_ - Used to generate HDF5 datasets on hard drive and use them to spare RAM,\n* `pickle <https://docs.python.org/3/library/pickle.html>`_ - Used to store some results,\n* `pandas <https://pandas.pydata.org/>`_ - Used to manipulate data efficiently,\n* `six <https://pypi.org/project/six/>`_ -\n* `m2r <https://pypi.org/project/m2r/>`_ - Used to generate documentation from the readme,\n* `docutils <https://pypi.org/project/docutils/>`_ - Used to generate documentation,\n* `pyyaml <https://pypi.org/project/PyYAML/>`_ - Used to read the config files,\n* `plotly <https://plot.ly/>`_ - Used to generate interactive HTML visuals,\n* `tabulate <https://pypi.org/project/tabulate/>`_ - Used to generated the confusion matrix.\n* `pyscm-ml <https://pypi.org/project/pyscm-ml/>`_ - \n\n\nInstalling\n<<<<<<<<<<\n\nOnce you cloned the project from the `github repository <https://github.com/multi-learn/summit/>`_, you just have to use :\n\n.. code:: bash\n\n    cd path/to/summit/\n    pip install -e .\n\n\nIn the `summit` directory to install SuMMIT and its dependencies.\n\nRunning the tests\n<<<<<<<<<<<<<<<<<\n\nTo run the test suite of SuMMIT, run :\n\n.. code:: bash\n\n    cd path/to/summit\n    pip install -e .[dev]\n    pytest\n\nThe coverage report is automatically generated and stored in the ``htmlcov/`` directory\n\nBuilding the documentation\n<<<<<<<<<<<<<<<<<<<<<<<<<<\n\nTo locally build the `github-documentation <https://multi-learn.github.io/summit/index.html>`_ run :\n\n.. code:: bash\n\n    cd path/to/summit\n    pip install -e .[doc]\n    python setup.py build_sphinx\n\nThe built html files will be stored in ``path/to/summit/build/sphinx/html``\n\nRunning on simulated data\n<<<<<<<<<<<<<<<<<<<<<<<<<\n\nFor your first go with SuMMIT, you can run it on simulated data with\n\n.. code:: bash\n\n    python\n    >>> from summit.execute import execute\n    >>> execute(\"example 1\")\n\nThis will run the benchmark of `documentation's Example 1 <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/example1.html>`_.\n\nFor more information about the examples, see the `documentation <http://baptiste.bauvin.pages.lis-lab.fr/summit/index.html>`_.\nResults will, by default, be stored in the results directory of the installation path :\n``path/to/summit/multiview_platform/examples/results``.\n\nThe documentation proposes a detailed interpretation of the results and arguments of SuMMIT through `6 tutorials <http://baptiste.bauvin.pages.lis-lab.fr/summit/>`_.\n\nDataset compatibility\n<<<<<<<<<<<<<<<<<<<<<\n\nIn order to start a benchmark on your own dataset, you need to format it so SuMMIT can use it. To do so, a `python script <https://gitlab.lis-lab.fr/baptiste.bauvin/summit/-/blob/master/format_dataset.py>`_ is provided.\n\nFor more information, see `Example 5 <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/example5.html>`_\n\nRunning on your dataset\n+++++++++++++++++++++++\n\nOnce you have formatted your dataset, to run SuMMIT on it you need to modify the config file as\n\n.. code:: yaml\n\n    name: [\"your_file_name\"]\n    pathf: \"path/to/your/dataset\"\n\n\nIt is however highly recommended to follow the documentation's `tutorials <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/index.html>`_ to learn the use of each parameter.\n \n\nAuthors\n-------\n\n* **Baptiste BAUVIN**\n* **Dominique BENIELLI**\n* **Alexis PROD'HOMME**\n\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Supervised MultiModal Integration Tool",
    "version": "0.0.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/multi-learn/summit/issues",
        "Documentation": "https://multi-learn.github.io/summit/",
        "Sources": "https://github.com/multi-learn/summit"
    },
    "split_keywords": [
        "machine learning",
        " supervised learning",
        " classification",
        " tool",
        " multiview learning",
        " monoview learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6d6691980ed347c117d8b1f53d63bea7c2c7763476b8056f44db8d3deb329530",
                "md5": "568dbbd2ffac83ce47e4969d50542dd6",
                "sha256": "ab69d7b38689c20930c7321c6b5003a13874f07157bbbcbf12e1dc3b410776cc"
            },
            "downloads": -1,
            "filename": "summit_multi_learn-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "568dbbd2ffac83ce47e4969d50542dd6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 43370986,
            "upload_time": "2025-07-11T18:20:31",
            "upload_time_iso_8601": "2025-07-11T18:20:31.577855Z",
            "url": "https://files.pythonhosted.org/packages/6d/66/91980ed347c117d8b1f53d63bea7c2c7763476b8056f44db8d3deb329530/summit_multi_learn-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "319dc72f54fa4366c8c53064df0559469d2adad27062629f96f0f262924cc855",
                "md5": "8faa90d661e216e08f7439f66bbd8533",
                "sha256": "60afdbfffb2e2218fb296039c5b5a8cb175f51cfc04216ba5326c2886adf62a5"
            },
            "downloads": -1,
            "filename": "summit_multi_learn-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "8faa90d661e216e08f7439f66bbd8533",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 42659680,
            "upload_time": "2025-07-11T18:20:42",
            "upload_time_iso_8601": "2025-07-11T18:20:42.644810Z",
            "url": "https://files.pythonhosted.org/packages/31/9d/c72f54fa4366c8c53064df0559469d2adad27062629f96f0f262924cc855/summit_multi_learn-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-11 18:20:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "multi-learn",
    "github_project": "summit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "h5py",
            "specs": [
                [
                    ">=",
                    "2.9.0"
                ]
            ]
        },
        {
            "name": "joblib",
            "specs": [
                [
                    ">=",
                    "0.13.2"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.24.0"
                ]
            ]
        },
        {
            "name": "pyparsing",
            "specs": [
                [
                    ">=",
                    "2.4.0"
                ]
            ]
        },
        {
            "name": "python-dateutil",
            "specs": [
                [
                    ">=",
                    "2.8.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.2.1"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "six",
            "specs": [
                [
                    ">=",
                    "1.12.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "0.23.3"
                ]
            ]
        },
        {
            "name": "pyyaml",
            "specs": [
                [
                    ">=",
                    "3.12"
                ]
            ]
        },
        {
            "name": "plotly",
            "specs": [
                [
                    ">=",
                    "4.2.1"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.1.1"
                ]
            ]
        },
        {
            "name": "tabulate",
            "specs": [
                [
                    ">=",
                    "0.8.6"
                ]
            ]
        },
        {
            "name": "pyscm-ml",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "imbalanced-learn",
            "specs": [
                [
                    ">=",
                    "0.10.1"
                ]
            ]
        },
        {
            "name": "scikit-multimodallearn",
            "specs": [
                [
                    ">=",
                    "0.1.0"
                ]
            ]
        },
        {
            "name": "randomscm",
            "specs": [
                [
                    "==",
                    "0.1.2"
                ]
            ]
        }
    ],
    "lcname": "summit-multi-learn"
}
        
Elapsed time: 0.70901s