.. |pipeline| image:: https://gitlab.lis-lab.fr/baptiste.bauvin/summit/badges/master/pipeline.svg
:alt: Pipeline status
.. |license| image:: https://img.shields.io/badge/License-New%20BSD-blue.svg
:target: https://opensource.org/licenses/BSD-3-Clause
:alt: License: New BSD
.. |coverage| image:: https://gitlab.lis-lab.fr/baptiste.bauvin/summit/badges/master/coverage.svg
:target: http://baptiste.bauvin.pages.lis-lab.fr/summit/coverage/index.html
:alt: Coverage
|pipeline| |license| |coverage|
Supervised MultiModal Integration Tool's Readme
===============================================
This project aims to be an easy-to-use solution to run a prior benchmark on a dataset and evaluate mono- & multi-view algorithms capacity to classify it correctly.
Getting Started
---------------
SuMMIT has been designed and uses continuous integration for Linux platforms (ubuntu 18.04), but we try to keep it as compatible as possible with Mac and Windows.
+----------+-------------------+
| Platform | Last positive test|
+==========+===================+
| Linux | |pipeline| |
+----------+-------------------+
| Mac | 1st of May, 2020 |
+----------+-------------------+
| Windows | 1st of May, 2020 |
+----------+-------------------+
Prerequisites
<<<<<<<<<<<<<
To be able to use this project, you'll need :
* `Python 3 <https://docs.python.org/3/>`_
And the following python modules will be automatically installed :
* `numpy <http://www.numpy.org/>`_, `scipy <https://scipy.org/>`_,
* `matplotlib <http://matplotlib.org/>`_ - Used to plot results,
* `sklearn <http://scikit-learn.org/stable/>`_ - Used for the monoview classifiers,
* `joblib <https://pypi.python.org/pypi/joblib>`_ - Used to compute on multiple threads,
* `h5py <https://www.h5py.org>`_ - Used to generate HDF5 datasets on hard drive and use them to spare RAM,
* `pickle <https://docs.python.org/3/library/pickle.html>`_ - Used to store some results,
* `pandas <https://pandas.pydata.org/>`_ - Used to manipulate data efficiently,
* `six <https://pypi.org/project/six/>`_ -
* `m2r <https://pypi.org/project/m2r/>`_ - Used to generate documentation from the readme,
* `docutils <https://pypi.org/project/docutils/>`_ - Used to generate documentation,
* `pyyaml <https://pypi.org/project/PyYAML/>`_ - Used to read the config files,
* `plotly <https://plot.ly/>`_ - Used to generate interactive HTML visuals,
* `tabulate <https://pypi.org/project/tabulate/>`_ - Used to generated the confusion matrix.
* `pyscm-ml <https://pypi.org/project/pyscm-ml/>`_ -
Installing
<<<<<<<<<<
Once you cloned the project from the `github repository <https://github.com/multi-learn/summit/>`_, you just have to use :
.. code:: bash
cd path/to/summit/
pip install -e .
In the `summit` directory to install SuMMIT and its dependencies.
Running the tests
<<<<<<<<<<<<<<<<<
To run the test suite of SuMMIT, run :
.. code:: bash
cd path/to/summit
pip install -e .[dev]
pytest
The coverage report is automatically generated and stored in the ``htmlcov/`` directory
Building the documentation
<<<<<<<<<<<<<<<<<<<<<<<<<<
To locally build the `github-documentation <https://multi-learn.github.io/summit/index.html>`_ run :
.. code:: bash
cd path/to/summit
pip install -e .[doc]
python setup.py build_sphinx
The built html files will be stored in ``path/to/summit/build/sphinx/html``
Running on simulated data
<<<<<<<<<<<<<<<<<<<<<<<<<
For your first go with SuMMIT, you can run it on simulated data with
.. code:: bash
python
>>> from summit.execute import execute
>>> execute("example 1")
This will run the benchmark of `documentation's Example 1 <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/example1.html>`_.
For more information about the examples, see the `documentation <http://baptiste.bauvin.pages.lis-lab.fr/summit/index.html>`_.
Results will, by default, be stored in the results directory of the installation path :
``path/to/summit/multiview_platform/examples/results``.
The documentation proposes a detailed interpretation of the results and arguments of SuMMIT through `6 tutorials <http://baptiste.bauvin.pages.lis-lab.fr/summit/>`_.
Dataset compatibility
<<<<<<<<<<<<<<<<<<<<<
In order to start a benchmark on your own dataset, you need to format it so SuMMIT can use it. To do so, a `python script <https://gitlab.lis-lab.fr/baptiste.bauvin/summit/-/blob/master/format_dataset.py>`_ is provided.
For more information, see `Example 5 <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/example5.html>`_
Running on your dataset
+++++++++++++++++++++++
Once you have formatted your dataset, to run SuMMIT on it you need to modify the config file as
.. code:: yaml
name: ["your_file_name"]
pathf: "path/to/your/dataset"
It is however highly recommended to follow the documentation's `tutorials <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/index.html>`_ to learn the use of each parameter.
Authors
-------
* **Baptiste BAUVIN**
* **Dominique BENIELLI**
* **Alexis PROD'HOMME**
Raw data
{
"_id": null,
"home_page": null,
"name": "summit-multi-learn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "machine learning, supervised learning, classification, tool, multiview learning, monoview learning",
"author": null,
"author_email": "Baptiste Bauvin <baptiste.bauvin.work@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/31/9d/c72f54fa4366c8c53064df0559469d2adad27062629f96f0f262924cc855/summit_multi_learn-0.0.2.tar.gz",
"platform": null,
"description": ".. |pipeline| image:: https://gitlab.lis-lab.fr/baptiste.bauvin/summit/badges/master/pipeline.svg\n :alt: Pipeline status\n\n.. |license| image:: https://img.shields.io/badge/License-New%20BSD-blue.svg\n :target: https://opensource.org/licenses/BSD-3-Clause\n :alt: License: New BSD\n\n.. |coverage| image:: https://gitlab.lis-lab.fr/baptiste.bauvin/summit/badges/master/coverage.svg\n :target: http://baptiste.bauvin.pages.lis-lab.fr/summit/coverage/index.html\n :alt: Coverage\n\n|pipeline| |license| |coverage|\n\n\n\n\nSupervised MultiModal Integration Tool's Readme\n===============================================\n\nThis project aims to be an easy-to-use solution to run a prior benchmark on a dataset and evaluate mono- & multi-view algorithms capacity to classify it correctly.\n\nGetting Started\n---------------\n\nSuMMIT has been designed and uses continuous integration for Linux platforms (ubuntu 18.04), but we try to keep it as compatible as possible with Mac and Windows.\n\n+----------+-------------------+\n| Platform | Last positive test|\n+==========+===================+\n| Linux | |pipeline| |\n+----------+-------------------+\n| Mac | 1st of May, 2020 |\n+----------+-------------------+\n| Windows | 1st of May, 2020 |\n+----------+-------------------+\n\n\nPrerequisites\n<<<<<<<<<<<<<\n\nTo be able to use this project, you'll need :\n\n* `Python 3 <https://docs.python.org/3/>`_\n\nAnd the following python modules will be automatically installed :\n\n* `numpy <http://www.numpy.org/>`_, `scipy <https://scipy.org/>`_,\n* `matplotlib <http://matplotlib.org/>`_ - Used to plot results,\n* `sklearn <http://scikit-learn.org/stable/>`_ - Used for the monoview classifiers,\n* `joblib <https://pypi.python.org/pypi/joblib>`_ - Used to compute on multiple threads,\n* `h5py <https://www.h5py.org>`_ - Used to generate HDF5 datasets on hard drive and use them to spare RAM,\n* `pickle <https://docs.python.org/3/library/pickle.html>`_ - Used to store some results,\n* `pandas <https://pandas.pydata.org/>`_ - Used to manipulate data efficiently,\n* `six <https://pypi.org/project/six/>`_ -\n* `m2r <https://pypi.org/project/m2r/>`_ - Used to generate documentation from the readme,\n* `docutils <https://pypi.org/project/docutils/>`_ - Used to generate documentation,\n* `pyyaml <https://pypi.org/project/PyYAML/>`_ - Used to read the config files,\n* `plotly <https://plot.ly/>`_ - Used to generate interactive HTML visuals,\n* `tabulate <https://pypi.org/project/tabulate/>`_ - Used to generated the confusion matrix.\n* `pyscm-ml <https://pypi.org/project/pyscm-ml/>`_ - \n\n\nInstalling\n<<<<<<<<<<\n\nOnce you cloned the project from the `github repository <https://github.com/multi-learn/summit/>`_, you just have to use :\n\n.. code:: bash\n\n cd path/to/summit/\n pip install -e .\n\n\nIn the `summit` directory to install SuMMIT and its dependencies.\n\nRunning the tests\n<<<<<<<<<<<<<<<<<\n\nTo run the test suite of SuMMIT, run :\n\n.. code:: bash\n\n cd path/to/summit\n pip install -e .[dev]\n pytest\n\nThe coverage report is automatically generated and stored in the ``htmlcov/`` directory\n\nBuilding the documentation\n<<<<<<<<<<<<<<<<<<<<<<<<<<\n\nTo locally build the `github-documentation <https://multi-learn.github.io/summit/index.html>`_ run :\n\n.. code:: bash\n\n cd path/to/summit\n pip install -e .[doc]\n python setup.py build_sphinx\n\nThe built html files will be stored in ``path/to/summit/build/sphinx/html``\n\nRunning on simulated data\n<<<<<<<<<<<<<<<<<<<<<<<<<\n\nFor your first go with SuMMIT, you can run it on simulated data with\n\n.. code:: bash\n\n python\n >>> from summit.execute import execute\n >>> execute(\"example 1\")\n\nThis will run the benchmark of `documentation's Example 1 <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/example1.html>`_.\n\nFor more information about the examples, see the `documentation <http://baptiste.bauvin.pages.lis-lab.fr/summit/index.html>`_.\nResults will, by default, be stored in the results directory of the installation path :\n``path/to/summit/multiview_platform/examples/results``.\n\nThe documentation proposes a detailed interpretation of the results and arguments of SuMMIT through `6 tutorials <http://baptiste.bauvin.pages.lis-lab.fr/summit/>`_.\n\nDataset compatibility\n<<<<<<<<<<<<<<<<<<<<<\n\nIn order to start a benchmark on your own dataset, you need to format it so SuMMIT can use it. To do so, a `python script <https://gitlab.lis-lab.fr/baptiste.bauvin/summit/-/blob/master/format_dataset.py>`_ is provided.\n\nFor more information, see `Example 5 <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/example5.html>`_\n\nRunning on your dataset\n+++++++++++++++++++++++\n\nOnce you have formatted your dataset, to run SuMMIT on it you need to modify the config file as\n\n.. code:: yaml\n\n name: [\"your_file_name\"]\n pathf: \"path/to/your/dataset\"\n\n\nIt is however highly recommended to follow the documentation's `tutorials <http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/index.html>`_ to learn the use of each parameter.\n \n\nAuthors\n-------\n\n* **Baptiste BAUVIN**\n* **Dominique BENIELLI**\n* **Alexis PROD'HOMME**\n\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "Supervised MultiModal Integration Tool",
"version": "0.0.2",
"project_urls": {
"Bug Tracker": "https://github.com/multi-learn/summit/issues",
"Documentation": "https://multi-learn.github.io/summit/",
"Sources": "https://github.com/multi-learn/summit"
},
"split_keywords": [
"machine learning",
" supervised learning",
" classification",
" tool",
" multiview learning",
" monoview learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "6d6691980ed347c117d8b1f53d63bea7c2c7763476b8056f44db8d3deb329530",
"md5": "568dbbd2ffac83ce47e4969d50542dd6",
"sha256": "ab69d7b38689c20930c7321c6b5003a13874f07157bbbcbf12e1dc3b410776cc"
},
"downloads": -1,
"filename": "summit_multi_learn-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "568dbbd2ffac83ce47e4969d50542dd6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 43370986,
"upload_time": "2025-07-11T18:20:31",
"upload_time_iso_8601": "2025-07-11T18:20:31.577855Z",
"url": "https://files.pythonhosted.org/packages/6d/66/91980ed347c117d8b1f53d63bea7c2c7763476b8056f44db8d3deb329530/summit_multi_learn-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "319dc72f54fa4366c8c53064df0559469d2adad27062629f96f0f262924cc855",
"md5": "8faa90d661e216e08f7439f66bbd8533",
"sha256": "60afdbfffb2e2218fb296039c5b5a8cb175f51cfc04216ba5326c2886adf62a5"
},
"downloads": -1,
"filename": "summit_multi_learn-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "8faa90d661e216e08f7439f66bbd8533",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 42659680,
"upload_time": "2025-07-11T18:20:42",
"upload_time_iso_8601": "2025-07-11T18:20:42.644810Z",
"url": "https://files.pythonhosted.org/packages/31/9d/c72f54fa4366c8c53064df0559469d2adad27062629f96f0f262924cc855/summit_multi_learn-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-11 18:20:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "multi-learn",
"github_project": "summit",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "h5py",
"specs": [
[
">=",
"2.9.0"
]
]
},
{
"name": "joblib",
"specs": [
[
">=",
"0.13.2"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.24.0"
]
]
},
{
"name": "pyparsing",
"specs": [
[
">=",
"2.4.0"
]
]
},
{
"name": "python-dateutil",
"specs": [
[
">=",
"2.8.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
">=",
"1.2.1"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.3.0"
]
]
},
{
"name": "six",
"specs": [
[
">=",
"1.12.0"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"0.23.3"
]
]
},
{
"name": "pyyaml",
"specs": [
[
">=",
"3.12"
]
]
},
{
"name": "plotly",
"specs": [
[
">=",
"4.2.1"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.1.1"
]
]
},
{
"name": "tabulate",
"specs": [
[
">=",
"0.8.6"
]
]
},
{
"name": "pyscm-ml",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "imbalanced-learn",
"specs": [
[
">=",
"0.10.1"
]
]
},
{
"name": "scikit-multimodallearn",
"specs": [
[
">=",
"0.1.0"
]
]
},
{
"name": "randomscm",
"specs": [
[
"==",
"0.1.2"
]
]
}
],
"lcname": "summit-multi-learn"
}