# teneva_opti
## Description
Collection of various optimization methods (search for the global minimum and/or maximum) for multivariate functions and multidimensional data arrays (tensors). This library is based on a software product [teneva](https://github.com/AndreiChertkov/teneva). See also related benchmarks library [teneva_bm](https://github.com/AIRI-Institute/teneva_bm).
## Installation
1. The package can be installed via pip (it requires the [Python](https://www.python.org) programming language of the version 3.8 or 3.9):
```bash
pip install teneva_opti==0.6.0
```
> The package can be also downloaded from the repository [teneva_opti](https://github.com/AIRI-Institute/teneva_opti) and be installed by `python setup.py install` command from the root folder of the project.
2. We test optimizers with benchmarks from [teneva_bm](https://github.com/AIRI-Institute/teneva_bm) library. For installation of additional dependencies (`gym`, `mujoco`, etc.), please, do the following (for existing conda environment `teneva_opti`; if you are using a different environment name, then please make the appropriate substitution in the script; note that you don't need to use environment in colab):
```bash
wget https://raw.githubusercontent.com/AIRI-Institute/teneva_bm/main/install_all.py && python install_all.py --env teneva_opti && rm install_all.py
```
> In the case of problems with `scikit-learn`, uninstall it as `pip uninstall scikit-learn` and then install it from the anaconda: `conda install -c anaconda scikit-learn`. If you have problems downloading the script via wget, you can download it manually from the root folder of the repository [teneva_bm](https://github.com/AIRI-Institute/teneva_bm).
## Documentation and examples (in progress...)
Please, run the demo script from the root of the [teneva_opti](https://github.com/AIRI-Institute/teneva_opti) repository:
```bash
clear && python demo/base.py
```
> See also other demo scripts in the folder `demo` of the [teneva_opti](https://github.com/AIRI-Institute/teneva_opti) repository.
## Authors
- [Andrei Chertkov](https://github.com/AndreiChertkov)
- [Gleb Ryzhakov](https://github.com/G-Ryzhakov)
- [Ivan Oseledets](https://github.com/oseledets)
---
> ✭__🚂 The stars that you give to **teneva_opti**, motivate us to develop faster and add new interesting features to the code 😃
Raw data
{
"_id": null,
"home_page": "https://github.com/AIRI-Institute/teneva_opti",
"name": "teneva-opti",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "optimization method multidimensional array multivariate function tensor train nevergrad cma ttopt protes genetic algorithm evolutionary strategy",
"author": "Andrei Chertkov",
"author_email": "andre.chertkov@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/a6/30/1cc27048efbb69084a2a0c50cbde4013a388c851731b2dee1535b2d97efc/teneva_opti-0.6.0.tar.gz",
"platform": null,
"description": "# teneva_opti\n\n\n## Description\n\nCollection of various optimization methods (search for the global minimum and/or maximum) for multivariate functions and multidimensional data arrays (tensors). This library is based on a software product [teneva](https://github.com/AndreiChertkov/teneva). See also related benchmarks library [teneva_bm](https://github.com/AIRI-Institute/teneva_bm).\n\n\n## Installation\n\n1. The package can be installed via pip (it requires the [Python](https://www.python.org) programming language of the version 3.8 or 3.9):\n ```bash\n pip install teneva_opti==0.6.0\n ```\n > The package can be also downloaded from the repository [teneva_opti](https://github.com/AIRI-Institute/teneva_opti) and be installed by `python setup.py install` command from the root folder of the project.\n\n2. We test optimizers with benchmarks from [teneva_bm](https://github.com/AIRI-Institute/teneva_bm) library. For installation of additional dependencies (`gym`, `mujoco`, etc.), please, do the following (for existing conda environment `teneva_opti`; if you are using a different environment name, then please make the appropriate substitution in the script; note that you don't need to use environment in colab):\n ```bash\n wget https://raw.githubusercontent.com/AIRI-Institute/teneva_bm/main/install_all.py && python install_all.py --env teneva_opti && rm install_all.py\n ```\n > In the case of problems with `scikit-learn`, uninstall it as `pip uninstall scikit-learn` and then install it from the anaconda: `conda install -c anaconda scikit-learn`. If you have problems downloading the script via wget, you can download it manually from the root folder of the repository [teneva_bm](https://github.com/AIRI-Institute/teneva_bm).\n\n\n## Documentation and examples (in progress...)\n\nPlease, run the demo script from the root of the [teneva_opti](https://github.com/AIRI-Institute/teneva_opti) repository:\n```bash\nclear && python demo/base.py\n```\n\n> See also other demo scripts in the folder `demo` of the [teneva_opti](https://github.com/AIRI-Institute/teneva_opti) repository.\n\n\n## Authors\n\n- [Andrei Chertkov](https://github.com/AndreiChertkov)\n- [Gleb Ryzhakov](https://github.com/G-Ryzhakov)\n- [Ivan Oseledets](https://github.com/oseledets)\n\n\n---\n\n\n> \u272d__\ud83d\ude82 The stars that you give to **teneva_opti**, motivate us to develop faster and add new interesting features to the code \ud83d\ude03\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Collection of various optimization methods, including tensor based, for multivariate functions and multidimensional data arrays",
"version": "0.6.0",
"project_urls": {
"Homepage": "https://github.com/AIRI-Institute/teneva_opti",
"Source": "https://github.com/AIRI-Institute/teneva_opti"
},
"split_keywords": [
"optimization",
"method",
"multidimensional",
"array",
"multivariate",
"function",
"tensor",
"train",
"nevergrad",
"cma",
"ttopt",
"protes",
"genetic",
"algorithm",
"evolutionary",
"strategy"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "64f569a58dcac8ee10c84c7ef11d2bcab361ebf66f01bff2ada657897f0ebe29",
"md5": "bfc16dbd7ce7da6a349e086ce36005f5",
"sha256": "867e8b4c4e955259db36ea4dd17d775fb3338d078f6aa3ffc43d3f2b7a5f35d6"
},
"downloads": -1,
"filename": "teneva_opti-0.6.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "bfc16dbd7ce7da6a349e086ce36005f5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 23617,
"upload_time": "2024-04-23T13:43:59",
"upload_time_iso_8601": "2024-04-23T13:43:59.554059Z",
"url": "https://files.pythonhosted.org/packages/64/f5/69a58dcac8ee10c84c7ef11d2bcab361ebf66f01bff2ada657897f0ebe29/teneva_opti-0.6.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a6301cc27048efbb69084a2a0c50cbde4013a388c851731b2dee1535b2d97efc",
"md5": "9f9c6c5fd39436496c30c91ba5bf4ea7",
"sha256": "d0cbc4c14f7ea8626a7e688be19295ef7403c312374019fc94e07d2f3d4ddafa"
},
"downloads": -1,
"filename": "teneva_opti-0.6.0.tar.gz",
"has_sig": false,
"md5_digest": "9f9c6c5fd39436496c30c91ba5bf4ea7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 19698,
"upload_time": "2024-04-23T13:44:01",
"upload_time_iso_8601": "2024-04-23T13:44:01.066433Z",
"url": "https://files.pythonhosted.org/packages/a6/30/1cc27048efbb69084a2a0c50cbde4013a388c851731b2dee1535b2d97efc/teneva_opti-0.6.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-23 13:44:01",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "AIRI-Institute",
"github_project": "teneva_opti",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "contourpy",
"specs": [
[
"==",
"1.1.1"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.7.0"
],
[
"<",
"3.7.1"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.7.0"
]
]
},
{
"name": "ml_dtypes",
"specs": [
[
"<=",
"0.2.0"
]
]
},
{
"name": "ml_dtypes",
"specs": []
},
{
"name": "nevergrad",
"specs": [
[
"==",
"0.8.0"
]
]
},
{
"name": "numpy",
"specs": [
[
"<",
"1.25"
],
[
">=",
"1.22"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.22"
]
]
},
{
"name": "pandas",
"specs": [
[
"<=",
"1.5.3"
]
]
},
{
"name": "protes",
"specs": [
[
"==",
"0.3.6"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
"<=",
"1.3.2"
]
]
},
{
"name": "scipy",
"specs": [
[
"<",
"1.11"
],
[
">=",
"1.9"
]
]
},
{
"name": "seaborn",
"specs": [
[
"==",
"0.12.2"
]
]
},
{
"name": "teneva",
"specs": [
[
">=",
"0.14.7"
]
]
},
{
"name": "teneva_bm",
"specs": [
[
"==",
"0.9.0"
]
]
},
{
"name": "ttopt",
"specs": [
[
"==",
"0.6.2"
]
]
}
],
"lcname": "teneva-opti"
}