torch-spatiotemporal


Nametorch-spatiotemporal JSON
Version 0.9.5 PyPI version JSON
download
home_pagehttps://github.com/TorchSpatiotemporal/tsl
SummaryA PyTorch library for spatiotemporal data processing
upload_time2024-07-18 14:28:33
maintainerNone
docs_urlNone
authorAndrea Cini, Ivan Marisca
requires_python>=3.8
licenseMIT
keywords pytorch pytorch-geometric geometric-deep-learning graph-neural-networks temporal-graph-networks spatiotemporal-graph-neural-networks spatiotemporal-processing neural-spatiotemporal-forecasting time-series-analysis forecasting
VCS
bugtrack_url
requirements einops hydra-core numpy omegaconf pandas lightning PyYAML scikit_learn scipy tables torch torch_geometric torchmetrics tqdm
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
    <br><br>
    <img alt="Torch Spatiotemporal" src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo_text.svg" width="85%"/>
    <h3>Neural spatiotemporal forecasting with PyTorch</h3>
    <hr>
    <p>
    <a href='https://pypi.org/project/torch-spatiotemporal/'><img alt="PyPI" src="https://img.shields.io/pypi/v/torch-spatiotemporal"></a>
    <img alt="PyPI - Python Version" src="https://img.shields.io/badge/python-%3E%3D3.8-blue">
    <!-- img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/torch-spatiotemporal" -->
    <img alt="Total downloads" src="https://static.pepy.tech/badge/torch-spatiotemporal">
    <a href='https://torch-spatiotemporal.readthedocs.io/en/latest/?badge=latest'><img src='https://readthedocs.org/projects/torch-spatiotemporal/badge/?version=latest' alt='Documentation Status' /></a>
    </p>
    <p>
    ๐Ÿš€ <a href="https://torch-spatiotemporal.readthedocs.io/en/latest/usage/quickstart.html">Getting Started</a> - ๐Ÿ“š <a href="https://torch-spatiotemporal.readthedocs.io/en/latest/">Documentation</a> - ๐Ÿ’ป <a href="https://torch-spatiotemporal.readthedocs.io/en/latest/notebooks/a_gentle_introduction_to_tsl.html">Introductory notebook</a>
    </p>
</div>

<p><img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> <b>tsl</b> <em>(Torch Spatiotemporal)</em> is a library built to accelerate research on neural spatiotemporal data processing
methods, with a focus on Graph Neural Networks.</p>

<p>Built upon popular libraries such as <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pytorch.svg" width="20px" align="center"/> <a href="https://pytorch.org"><b>PyTorch</b></a>, <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pyg.svg" width="20px" align="center"/> <a href="https://pyg.org">PyG</a> (PyTorch Geometric), and <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/lightning.svg" width="20px" align="center"/> <a href="https://www.pytorchlightning.ai/">PyTorch Lightning</a>, <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl provides a unified and user-friendly framework for efficient neural spatiotemporal data processing, that goes from data preprocessing to model prototyping.</p>

## Features

* **Create Custom Models and Datasets**&nbsp;&nbsp; Easily build your own custom models and datasets for spatiotemporal data analysis. Whether you're working with sensor networks, environmental data, or any other spatiotemporal domain, <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl's high-level APIs empower you to develop tailored solutions.

* **Access a Wealth of Existing Datasets and Models**&nbsp;&nbsp; Leverage a vast collection of datasets and models from the spatiotemporal data processing literature. Explore and benchmark against state-of-the-art baselines, and test your brand new model on widely used public datasets.

* **Handle Irregularities and Missing Data**&nbsp;&nbsp; Seamlessly manage irregularities in your spatiotemporal data streams, including missing data and variations in network structures. Ensure the robustness and reliability of your data processing pipelines.

* **Streamlined Preprocessing**&nbsp;&nbsp; Automate the preprocessing phase with <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl's methods for scaling, resampling and clustering time series. Spend less time on data preparation and focus on extracting meaningful patterns and insights.

* **Efficient Data Structures**&nbsp;&nbsp; Utilize <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl's straightforward data structures, seamlessly integrated with <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pytorch.svg" width="20px" align="center"/> PyTorch and <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pyg.svg" width="20px" align="center"/> PyG, to accelerate your workflows. Benefit from the flexibility and compatibility of these widely adopted libraries.

* **Scalability with PyTorch Lightning**&nbsp;&nbsp; Scale your computations effortlessly, from a single CPU to clusters of GPUs, with <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl's integration with <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/lightning.svg" width="20px" align="center"/> PyTorch Lightning. Accelerate training and inference across various hardware configurations.

* **Modular Neural Layers**&nbsp;&nbsp; Build powerful and modular neural spatiotemporal models using <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl's collection of specialized layers. Create architectures with ease, leveraging the flexibility and extensibility of the library.

* **Reproducible Experiments**&nbsp;&nbsp; Ensure experiment reproducibility using the <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/hydra.svg" width="25px" align="center"/> <a href="https://hydra.cc/">Hydra</a> framework, a standard in the field. Validate and compare results confidently, promoting rigorous research in spatiotemporal data mining.

## Getting Started

Before you start using <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl, please review the <a href="https://torch-spatiotemporal.readthedocs.io/en/latest/">documentation</a> to get an understanding of the library and its capabilities.

You can also explore the examples provided in the `examples` directory to see how train deep learning models working with spatiotemporal data.

## Installation

Before installing <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl, make sure you have installed <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pytorch.svg" width="20px" align="center"/> <a href="https://pytorch.org">PyTorch</a> (>=1.9.0) and <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pyg.svg" width="20px" align="center"/> <a href="https://pyg.org">PyG</a> (>=2.0.3) in your virtual environment (see [PyG installation guidelines](https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html)). <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl is available for Python>=3.8. We recommend installation from github to be up-to-date with the latest version:

```bash
pip install git+https://github.com/TorchSpatiotemporal/tsl.git
```

Alternatively, you can install the library from the pypi repository:

```bash
pip install torch-spatiotemporal
```

To avoid dependencies issues, we recommend using [Anaconda](https://www.anaconda.com/) and the provided environment configuration by running the command:

```bash
conda env create -f conda_env.yml
```

## Tutorial

The best way to start using <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl is by following the tutorial notebook in `examples/notebooks/a_gentle_introduction_to_tsl.ipynb`.

## Documentation

Visit the [documentation](https://torch-spatiotemporal.readthedocs.io/en/latest/) to learn more about the library, including detailed API references, examples, and tutorials.

The documentation is hosted on [readthedocs](https://torch-spatiotemporal.readthedocs.io/en/latest/). For local access, you can build it from the `docs` directory.

## Contributing

Contributions are welcome! For major changes or new features, please open an issue first to discuss your ideas. See the [Contributing guidelines](https://github.com/TorchSpatiotemporal/tsl/blob/dev/.github/CONTRIBUTING.md) for more details on how to get involved. Help us build a better <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl!

Thanks to all contributors! ๐Ÿงก

<a href="https://github.com/TorchSpatiotemporal/tsl/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=TorchSpatiotemporal/tsl" />
</a>

## Citing

If you use Torch Spatiotemporal for your research, please consider citing the library

```latex
@software{Cini_Torch_Spatiotemporal_2022,
    author = {Cini, Andrea and Marisca, Ivan},
    license = {MIT},
    month = {3},
    title = {{Torch Spatiotemporal}},
    url = {https://github.com/TorchSpatiotemporal/tsl},
    year = {2022}
}
```

By [Andrea Cini](https://andreacini.github.io/) and [Ivan Marisca](https://marshka.github.io/).

## License

This project is licensed under the terms of the MIT license. See the [LICENSE](https://github.com/TorchSpatiotemporal/tsl/blob/main/LICENSE) file for details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/TorchSpatiotemporal/tsl",
    "name": "torch-spatiotemporal",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "pytorch, pytorch-geometric, geometric-deep-learning, graph-neural-networks, temporal-graph-networks, spatiotemporal-graph-neural-networks, spatiotemporal-processing, neural-spatiotemporal-forecasting, time-series-analysis, forecasting",
    "author": "Andrea Cini, Ivan Marisca",
    "author_email": "andrea.cini@usi.ch, ivan.marisca@usi.ch",
    "download_url": "https://files.pythonhosted.org/packages/ad/46/cb4f679f991b8e4462c1b3275dab7a2e21f9c7373281675c8ba257ed4c6f/torch_spatiotemporal-0.9.5.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n    <br><br>\n    <img alt=\"Torch Spatiotemporal\" src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo_text.svg\" width=\"85%\"/>\n    <h3>Neural spatiotemporal forecasting with PyTorch</h3>\n    <hr>\n    <p>\n    <a href='https://pypi.org/project/torch-spatiotemporal/'><img alt=\"PyPI\" src=\"https://img.shields.io/pypi/v/torch-spatiotemporal\"></a>\n    <img alt=\"PyPI - Python Version\" src=\"https://img.shields.io/badge/python-%3E%3D3.8-blue\">\n    <!-- img alt=\"PyPI - Python Version\" src=\"https://img.shields.io/pypi/pyversions/torch-spatiotemporal\" -->\n    <img alt=\"Total downloads\" src=\"https://static.pepy.tech/badge/torch-spatiotemporal\">\n    <a href='https://torch-spatiotemporal.readthedocs.io/en/latest/?badge=latest'><img src='https://readthedocs.org/projects/torch-spatiotemporal/badge/?version=latest' alt='Documentation Status' /></a>\n    </p>\n    <p>\n    \ud83d\ude80 <a href=\"https://torch-spatiotemporal.readthedocs.io/en/latest/usage/quickstart.html\">Getting Started</a> - \ud83d\udcda <a href=\"https://torch-spatiotemporal.readthedocs.io/en/latest/\">Documentation</a> - \ud83d\udcbb <a href=\"https://torch-spatiotemporal.readthedocs.io/en/latest/notebooks/a_gentle_introduction_to_tsl.html\">Introductory notebook</a>\n    </p>\n</div>\n\n<p><img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> <b>tsl</b> <em>(Torch Spatiotemporal)</em> is a library built to accelerate research on neural spatiotemporal data processing\nmethods, with a focus on Graph Neural Networks.</p>\n\n<p>Built upon popular libraries such as <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pytorch.svg\" width=\"20px\" align=\"center\"/> <a href=\"https://pytorch.org\"><b>PyTorch</b></a>, <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pyg.svg\" width=\"20px\" align=\"center\"/> <a href=\"https://pyg.org\">PyG</a> (PyTorch Geometric), and <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/lightning.svg\" width=\"20px\" align=\"center\"/> <a href=\"https://www.pytorchlightning.ai/\">PyTorch Lightning</a>, <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl provides a unified and user-friendly framework for efficient neural spatiotemporal data processing, that goes from data preprocessing to model prototyping.</p>\n\n## Features\n\n* **Create Custom Models and Datasets**&nbsp;&nbsp; Easily build your own custom models and datasets for spatiotemporal data analysis. Whether you're working with sensor networks, environmental data, or any other spatiotemporal domain, <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl's high-level APIs empower you to develop tailored solutions.\n\n* **Access a Wealth of Existing Datasets and Models**&nbsp;&nbsp; Leverage a vast collection of datasets and models from the spatiotemporal data processing literature. Explore and benchmark against state-of-the-art baselines, and test your brand new model on widely used public datasets.\n\n* **Handle Irregularities and Missing Data**&nbsp;&nbsp; Seamlessly manage irregularities in your spatiotemporal data streams, including missing data and variations in network structures. Ensure the robustness and reliability of your data processing pipelines.\n\n* **Streamlined Preprocessing**&nbsp;&nbsp; Automate the preprocessing phase with <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl's methods for scaling, resampling and clustering time series. Spend less time on data preparation and focus on extracting meaningful patterns and insights.\n\n* **Efficient Data Structures**&nbsp;&nbsp; Utilize <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl's straightforward data structures, seamlessly integrated with <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pytorch.svg\" width=\"20px\" align=\"center\"/> PyTorch and <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pyg.svg\" width=\"20px\" align=\"center\"/> PyG, to accelerate your workflows. Benefit from the flexibility and compatibility of these widely adopted libraries.\n\n* **Scalability with PyTorch Lightning**&nbsp;&nbsp; Scale your computations effortlessly, from a single CPU to clusters of GPUs, with <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl's integration with <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/lightning.svg\" width=\"20px\" align=\"center\"/> PyTorch Lightning. Accelerate training and inference across various hardware configurations.\n\n* **Modular Neural Layers**&nbsp;&nbsp; Build powerful and modular neural spatiotemporal models using <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl's collection of specialized layers. Create architectures with ease, leveraging the flexibility and extensibility of the library.\n\n* **Reproducible Experiments**&nbsp;&nbsp; Ensure experiment reproducibility using the <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/hydra.svg\" width=\"25px\" align=\"center\"/> <a href=\"https://hydra.cc/\">Hydra</a> framework, a standard in the field. Validate and compare results confidently, promoting rigorous research in spatiotemporal data mining.\n\n## Getting Started\n\nBefore you start using <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl, please review the <a href=\"https://torch-spatiotemporal.readthedocs.io/en/latest/\">documentation</a> to get an understanding of the library and its capabilities.\n\nYou can also explore the examples provided in the `examples` directory to see how train deep learning models working with spatiotemporal data.\n\n## Installation\n\nBefore installing <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl, make sure you have installed <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pytorch.svg\" width=\"20px\" align=\"center\"/> <a href=\"https://pytorch.org\">PyTorch</a> (>=1.9.0) and <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pyg.svg\" width=\"20px\" align=\"center\"/> <a href=\"https://pyg.org\">PyG</a> (>=2.0.3) in your virtual environment (see [PyG installation guidelines](https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html)). <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl is available for Python>=3.8. We recommend installation from github to be up-to-date with the latest version:\n\n```bash\npip install git+https://github.com/TorchSpatiotemporal/tsl.git\n```\n\nAlternatively, you can install the library from the pypi repository:\n\n```bash\npip install torch-spatiotemporal\n```\n\nTo avoid dependencies issues, we recommend using [Anaconda](https://www.anaconda.com/) and the provided environment configuration by running the command:\n\n```bash\nconda env create -f conda_env.yml\n```\n\n## Tutorial\n\nThe best way to start using <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl is by following the tutorial notebook in `examples/notebooks/a_gentle_introduction_to_tsl.ipynb`.\n\n## Documentation\n\nVisit the [documentation](https://torch-spatiotemporal.readthedocs.io/en/latest/) to learn more about the library, including detailed API references, examples, and tutorials.\n\nThe documentation is hosted on [readthedocs](https://torch-spatiotemporal.readthedocs.io/en/latest/). For local access, you can build it from the `docs` directory.\n\n## Contributing\n\nContributions are welcome! For major changes or new features, please open an issue first to discuss your ideas. See the [Contributing guidelines](https://github.com/TorchSpatiotemporal/tsl/blob/dev/.github/CONTRIBUTING.md) for more details on how to get involved. Help us build a better <img src=\"https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg\" width=\"25px\" align=\"center\"/> tsl!\n\nThanks to all contributors! \ud83e\udde1\n\n<a href=\"https://github.com/TorchSpatiotemporal/tsl/graphs/contributors\">\n  <img src=\"https://contrib.rocks/image?repo=TorchSpatiotemporal/tsl\" />\n</a>\n\n## Citing\n\nIf you use Torch Spatiotemporal for your research, please consider citing the library\n\n```latex\n@software{Cini_Torch_Spatiotemporal_2022,\n    author = {Cini, Andrea and Marisca, Ivan},\n    license = {MIT},\n    month = {3},\n    title = {{Torch Spatiotemporal}},\n    url = {https://github.com/TorchSpatiotemporal/tsl},\n    year = {2022}\n}\n```\n\nBy [Andrea Cini](https://andreacini.github.io/) and [Ivan Marisca](https://marshka.github.io/).\n\n## License\n\nThis project is licensed under the terms of the MIT license. See the [LICENSE](https://github.com/TorchSpatiotemporal/tsl/blob/main/LICENSE) file for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A PyTorch library for spatiotemporal data processing",
    "version": "0.9.5",
    "project_urls": {
        "Download": "https://github.com/TorchSpatiotemporal/tsl/archive/v0.9.5.tar.gz",
        "Homepage": "https://github.com/TorchSpatiotemporal/tsl"
    },
    "split_keywords": [
        "pytorch",
        " pytorch-geometric",
        " geometric-deep-learning",
        " graph-neural-networks",
        " temporal-graph-networks",
        " spatiotemporal-graph-neural-networks",
        " spatiotemporal-processing",
        " neural-spatiotemporal-forecasting",
        " time-series-analysis",
        " forecasting"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "72fd3b9987ea65b3ccd1ef4c61d54e53b0ec48f98e3e35976e097ee3588da809",
                "md5": "984317f2d317687b0618033085363c84",
                "sha256": "d60663c3d236fa43785e6059c3f04278f8a71b93c6ca2d42feeb9175613bb1c8"
            },
            "downloads": -1,
            "filename": "torch_spatiotemporal-0.9.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "984317f2d317687b0618033085363c84",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 253030,
            "upload_time": "2024-07-18T14:28:32",
            "upload_time_iso_8601": "2024-07-18T14:28:32.103215Z",
            "url": "https://files.pythonhosted.org/packages/72/fd/3b9987ea65b3ccd1ef4c61d54e53b0ec48f98e3e35976e097ee3588da809/torch_spatiotemporal-0.9.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ad46cb4f679f991b8e4462c1b3275dab7a2e21f9c7373281675c8ba257ed4c6f",
                "md5": "642d6d47f290f53854b36ff598993517",
                "sha256": "04112714191ee2d070095c9a94eb3002b1113e9730c8232524ffbe5438e26847"
            },
            "downloads": -1,
            "filename": "torch_spatiotemporal-0.9.5.tar.gz",
            "has_sig": false,
            "md5_digest": "642d6d47f290f53854b36ff598993517",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 183265,
            "upload_time": "2024-07-18T14:28:33",
            "upload_time_iso_8601": "2024-07-18T14:28:33.903168Z",
            "url": "https://files.pythonhosted.org/packages/ad/46/cb4f679f991b8e4462c1b3275dab7a2e21f9c7373281675c8ba257ed4c6f/torch_spatiotemporal-0.9.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-18 14:28:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "TorchSpatiotemporal",
    "github_project": "tsl",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "einops",
            "specs": []
        },
        {
            "name": "hydra-core",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">",
                    "1.20.3"
                ]
            ]
        },
        {
            "name": "omegaconf",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "lightning",
            "specs": []
        },
        {
            "name": "PyYAML",
            "specs": []
        },
        {
            "name": "scikit_learn",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "tables",
            "specs": []
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "2.0"
                ]
            ]
        },
        {
            "name": "torch_geometric",
            "specs": [
                [
                    ">=",
                    "2.3"
                ]
            ]
        },
        {
            "name": "torchmetrics",
            "specs": [
                [
                    ">=",
                    "0.7"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": []
        }
    ],
    "lcname": "torch-spatiotemporal"
}
        
Elapsed time: 4.63651s