ts-app


Namets-app JSON
Version 0.9.1 PyPI version JSON
download
home_pagehttps://github.com/Tim-Abwao/time-series-app
SummaryA simple dashboard application for interactively fitting ARIMA models.
upload_time2023-05-03 12:50:25
maintainer
docs_urlNone
authorAbwao
requires_python>=3.8
licenseMIT
keywords time_series dashboard arima
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Time Series App

[![PyPI version](https://badge.fury.io/py/ts-app.svg)](https://badge.fury.io/py/ts-app)
[![Python application](https://github.com/Tim-Abwao/time-series-app/actions/workflows/python-app.yml/badge.svg)](https://github.com/Tim-Abwao/time-series-app/actions/workflows/python-app.yml)

A dashboard application to help learn a little about, and apply *[Time Series][wiki_time_series] analysis* & *forecasting* concepts.

You can create a sample, or upload a file, and interactively fit a time series model on it.

The dashboard is built with [Dash][dash], and the time series models are fitted using [Statsmodels][statsmodels].

You can [try it out here][live-link], courtesy of [Render][render].

>**NOTE:** Free-hosted apps on *Render* might take a while to load since they are shut down when not in use.

![screencast of the app](https://raw.githubusercontent.com/Tim-Abwao/time-series-app/master/screencast.gif)

## Installation

The easiest way to get the app is from [PyPI][pypi]:

```bash
pip install ts-app
```

## Basic Usage

The command `ts_app` launches the app:

```bash
$ ts_app -h
usage: ts_app [-h] [-p PORT] [--host HOST] [--no-browser]

A simple dashboard application to learn time series basics and interactively fit ARIMA models.

optional arguments:
  -h, --help            show this help message and exit
  -p PORT, --port PORT  The TCP port on which to listen (default: 8000).
  --host HOST           A host-name or IP address (default: 'localhost').
  --no-browser          Avoid openning a browser tab or window.
```

You can also start the app from an interactive session:

```python
>>> import ts_app
>>> ts_app.run_app()
```

Afterwards, press `CTRL` + `C` to stop the server.

[wiki_time_series]: https://en.wikipedia.org/wiki/Time_series
[live-link]: https://time-series-app.onrender.com
[dash]: https://dash.plotly.com/
[render]: https://render.com/
[statsmodels]: https://www.statsmodels.org/stable/index.html
[pypi]:  https://pypi.org/project/ts-app/

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Tim-Abwao/time-series-app",
    "name": "ts-app",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "time_series dashboard ARIMA",
    "author": "Abwao",
    "author_email": "abwaomusungu@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/5d/b0/8da812c28f89dd0a7861c47f173e5ecf2a95131c8a7e908a4ccdb380531b/ts_app-0.9.1.tar.gz",
    "platform": null,
    "description": "# Time Series App\n\n[![PyPI version](https://badge.fury.io/py/ts-app.svg)](https://badge.fury.io/py/ts-app)\n[![Python application](https://github.com/Tim-Abwao/time-series-app/actions/workflows/python-app.yml/badge.svg)](https://github.com/Tim-Abwao/time-series-app/actions/workflows/python-app.yml)\n\nA dashboard application to help learn a little about, and apply *[Time Series][wiki_time_series] analysis* & *forecasting* concepts.\n\nYou can create a sample, or upload a file, and interactively fit a time series model on it.\n\nThe dashboard is built with [Dash][dash], and the time series models are fitted using [Statsmodels][statsmodels].\n\nYou can [try it out here][live-link], courtesy of [Render][render].\n\n>**NOTE:** Free-hosted apps on *Render* might take a while to load since they are shut down when not in use.\n\n![screencast of the app](https://raw.githubusercontent.com/Tim-Abwao/time-series-app/master/screencast.gif)\n\n## Installation\n\nThe easiest way to get the app is from [PyPI][pypi]:\n\n```bash\npip install ts-app\n```\n\n## Basic Usage\n\nThe command `ts_app` launches the app:\n\n```bash\n$ ts_app -h\nusage: ts_app [-h] [-p PORT] [--host HOST] [--no-browser]\n\nA simple dashboard application to learn time series basics and interactively fit ARIMA models.\n\noptional arguments:\n  -h, --help            show this help message and exit\n  -p PORT, --port PORT  The TCP port on which to listen (default: 8000).\n  --host HOST           A host-name or IP address (default: 'localhost').\n  --no-browser          Avoid openning a browser tab or window.\n```\n\nYou can also start the app from an interactive session:\n\n```python\n>>> import ts_app\n>>> ts_app.run_app()\n```\n\nAfterwards, press `CTRL` + `C` to stop the server.\n\n[wiki_time_series]: https://en.wikipedia.org/wiki/Time_series\n[live-link]: https://time-series-app.onrender.com\n[dash]: https://dash.plotly.com/\n[render]: https://render.com/\n[statsmodels]: https://www.statsmodels.org/stable/index.html\n[pypi]:  https://pypi.org/project/ts-app/\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A simple dashboard application for interactively fitting ARIMA models.",
    "version": "0.9.1",
    "project_urls": {
        "Homepage": "https://github.com/Tim-Abwao/time-series-app"
    },
    "split_keywords": [
        "time_series",
        "dashboard",
        "arima"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ee3cfde9f92fe337135b8aa170f30b82eb15deee6abb9a5114dee829de560838",
                "md5": "57c2ec90bf54f4ac4602a5e6379fe79e",
                "sha256": "7994be1ef025776df552be7883a07dbf3d4f780aa8d805b1496696c420d0154d"
            },
            "downloads": -1,
            "filename": "ts_app-0.9.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "57c2ec90bf54f4ac4602a5e6379fe79e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 101316,
            "upload_time": "2023-05-03T12:50:23",
            "upload_time_iso_8601": "2023-05-03T12:50:23.873118Z",
            "url": "https://files.pythonhosted.org/packages/ee/3c/fde9f92fe337135b8aa170f30b82eb15deee6abb9a5114dee829de560838/ts_app-0.9.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5db08da812c28f89dd0a7861c47f173e5ecf2a95131c8a7e908a4ccdb380531b",
                "md5": "4f4bd27219bbc5aa2eb4e041fe9ab479",
                "sha256": "8e366985e39a7ee9f3b43ef9df355983ef18a3a9a690eb5aca5e42b45d1c2f6d"
            },
            "downloads": -1,
            "filename": "ts_app-0.9.1.tar.gz",
            "has_sig": false,
            "md5_digest": "4f4bd27219bbc5aa2eb4e041fe9ab479",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 100646,
            "upload_time": "2023-05-03T12:50:25",
            "upload_time_iso_8601": "2023-05-03T12:50:25.145647Z",
            "url": "https://files.pythonhosted.org/packages/5d/b0/8da812c28f89dd0a7861c47f173e5ecf2a95131c8a7e908a4ccdb380531b/ts_app-0.9.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-03 12:50:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Tim-Abwao",
    "github_project": "time-series-app",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "ts-app"
}
        
Elapsed time: 0.45917s