# Time Series App
[![PyPI version](https://badge.fury.io/py/ts-app.svg)](https://badge.fury.io/py/ts-app)
[![Python application](https://github.com/Tim-Abwao/time-series-app/actions/workflows/python-app.yml/badge.svg)](https://github.com/Tim-Abwao/time-series-app/actions/workflows/python-app.yml)
A dashboard application to help learn a little about, and apply *[Time Series][wiki_time_series] analysis* & *forecasting* concepts.
You can create a sample, or upload a file, and interactively fit a time series model on it.
The dashboard is built with [Dash][dash], and the time series models are fitted using [Statsmodels][statsmodels].
You can [try it out here][live-link], courtesy of [Render][render].
>**NOTE:** Free-hosted apps on *Render* might take a while to load since they are shut down when not in use.
![screencast of the app](https://raw.githubusercontent.com/Tim-Abwao/time-series-app/master/screencast.gif)
## Installation
The easiest way to get the app is from [PyPI][pypi]:
```bash
pip install ts-app
```
## Basic Usage
The command `ts_app` launches the app:
```bash
$ ts_app -h
usage: ts_app [-h] [-p PORT] [--host HOST] [--no-browser]
A simple dashboard application to learn time series basics and interactively fit ARIMA models.
optional arguments:
-h, --help show this help message and exit
-p PORT, --port PORT The TCP port on which to listen (default: 8000).
--host HOST A host-name or IP address (default: 'localhost').
--no-browser Avoid openning a browser tab or window.
```
You can also start the app from an interactive session:
```python
>>> import ts_app
>>> ts_app.run_app()
```
Afterwards, press `CTRL` + `C` to stop the server.
[wiki_time_series]: https://en.wikipedia.org/wiki/Time_series
[live-link]: https://time-series-app.onrender.com
[dash]: https://dash.plotly.com/
[render]: https://render.com/
[statsmodels]: https://www.statsmodels.org/stable/index.html
[pypi]: https://pypi.org/project/ts-app/
Raw data
{
"_id": null,
"home_page": "https://github.com/Tim-Abwao/time-series-app",
"name": "ts-app",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "time_series dashboard ARIMA",
"author": "Abwao",
"author_email": "abwaomusungu@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/5d/b0/8da812c28f89dd0a7861c47f173e5ecf2a95131c8a7e908a4ccdb380531b/ts_app-0.9.1.tar.gz",
"platform": null,
"description": "# Time Series App\n\n[![PyPI version](https://badge.fury.io/py/ts-app.svg)](https://badge.fury.io/py/ts-app)\n[![Python application](https://github.com/Tim-Abwao/time-series-app/actions/workflows/python-app.yml/badge.svg)](https://github.com/Tim-Abwao/time-series-app/actions/workflows/python-app.yml)\n\nA dashboard application to help learn a little about, and apply *[Time Series][wiki_time_series] analysis* & *forecasting* concepts.\n\nYou can create a sample, or upload a file, and interactively fit a time series model on it.\n\nThe dashboard is built with [Dash][dash], and the time series models are fitted using [Statsmodels][statsmodels].\n\nYou can [try it out here][live-link], courtesy of [Render][render].\n\n>**NOTE:** Free-hosted apps on *Render* might take a while to load since they are shut down when not in use.\n\n![screencast of the app](https://raw.githubusercontent.com/Tim-Abwao/time-series-app/master/screencast.gif)\n\n## Installation\n\nThe easiest way to get the app is from [PyPI][pypi]:\n\n```bash\npip install ts-app\n```\n\n## Basic Usage\n\nThe command `ts_app` launches the app:\n\n```bash\n$ ts_app -h\nusage: ts_app [-h] [-p PORT] [--host HOST] [--no-browser]\n\nA simple dashboard application to learn time series basics and interactively fit ARIMA models.\n\noptional arguments:\n -h, --help show this help message and exit\n -p PORT, --port PORT The TCP port on which to listen (default: 8000).\n --host HOST A host-name or IP address (default: 'localhost').\n --no-browser Avoid openning a browser tab or window.\n```\n\nYou can also start the app from an interactive session:\n\n```python\n>>> import ts_app\n>>> ts_app.run_app()\n```\n\nAfterwards, press `CTRL` + `C` to stop the server.\n\n[wiki_time_series]: https://en.wikipedia.org/wiki/Time_series\n[live-link]: https://time-series-app.onrender.com\n[dash]: https://dash.plotly.com/\n[render]: https://render.com/\n[statsmodels]: https://www.statsmodels.org/stable/index.html\n[pypi]: https://pypi.org/project/ts-app/\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A simple dashboard application for interactively fitting ARIMA models.",
"version": "0.9.1",
"project_urls": {
"Homepage": "https://github.com/Tim-Abwao/time-series-app"
},
"split_keywords": [
"time_series",
"dashboard",
"arima"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ee3cfde9f92fe337135b8aa170f30b82eb15deee6abb9a5114dee829de560838",
"md5": "57c2ec90bf54f4ac4602a5e6379fe79e",
"sha256": "7994be1ef025776df552be7883a07dbf3d4f780aa8d805b1496696c420d0154d"
},
"downloads": -1,
"filename": "ts_app-0.9.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "57c2ec90bf54f4ac4602a5e6379fe79e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 101316,
"upload_time": "2023-05-03T12:50:23",
"upload_time_iso_8601": "2023-05-03T12:50:23.873118Z",
"url": "https://files.pythonhosted.org/packages/ee/3c/fde9f92fe337135b8aa170f30b82eb15deee6abb9a5114dee829de560838/ts_app-0.9.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5db08da812c28f89dd0a7861c47f173e5ecf2a95131c8a7e908a4ccdb380531b",
"md5": "4f4bd27219bbc5aa2eb4e041fe9ab479",
"sha256": "8e366985e39a7ee9f3b43ef9df355983ef18a3a9a690eb5aca5e42b45d1c2f6d"
},
"downloads": -1,
"filename": "ts_app-0.9.1.tar.gz",
"has_sig": false,
"md5_digest": "4f4bd27219bbc5aa2eb4e041fe9ab479",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 100646,
"upload_time": "2023-05-03T12:50:25",
"upload_time_iso_8601": "2023-05-03T12:50:25.145647Z",
"url": "https://files.pythonhosted.org/packages/5d/b0/8da812c28f89dd0a7861c47f173e5ecf2a95131c8a7e908a4ccdb380531b/ts_app-0.9.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-05-03 12:50:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Tim-Abwao",
"github_project": "time-series-app",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "ts-app"
}