tspex


Nametspex JSON
Version 0.6.3 PyPI version JSON
download
home_pagehttps://apcamargo.github.io/tspex/
SummaryA Python package for calculating tissue-specificity metrics for gene expression.
upload_time2023-07-04 18:02:08
maintainer
docs_urlNone
authorAntonio Pedro Camargo
requires_python>=3
licenseGNU General Public License v3.0
keywords bioinformatics gene expression tissue-specificity transcriptomics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # tspex

[![DOI](https://img.shields.io/badge/DOI-10.21203%2Frs.3.rs--51998%2Fv1-red)](https://doi.org/10.21203/rs.3.rs-51998/v1)
[![PyPI](https://img.shields.io/pypi/v/tspex.svg?label=PyPI&color=green)](https://pypi.python.org/pypi/tspex)
[![Conda](https://img.shields.io/conda/vn/bioconda/tspex.svg?label=Conda&color=green)](https://anaconda.org/bioconda/tspex)
[![PyPI downloads](https://img.shields.io/pypi/dm/tspex?label=PyPI%20downloads&color=blue)](https://pypi.python.org/pypi/tspex)
[![Conda downloads](https://img.shields.io/conda/dn/bioconda/tspex.svg?label=Conda%20downloads&color=blue)](https://anaconda.org/bioconda/tspex)

- [Overview](#overview)
- [Citation](#citation)
- [Documentation](#documentation)
- [Installation](#installation)
- [Python API tutorial](#python-api-tutorial)
- [Command-line interface](#command-line-interface)
- [Examples](#examples)

## Overview

tspex is a tissue-specificity calculator tool. It provides both an easy-to-use object-oriented Python API and a command-line interface (CLI) for calculating a variety of tissue-specificity metrics from gene expression data.

tspex features include:
  - Twelve different tissue-specificity metrics.
  - Integration with popular data analysis libraries, such as NumPy, SciPy, and pandas.
  - Visualization functions.
  - Support for Jupyter notebooks.


## Citation

If you use tspex in your research, it would be appreciated if you could cite it.

> Camargo, A. P., Vasconcelos, A. A., Fiamenghi, M. B., Pereira, G. A. G. & Carazzolle, M. F.. "[tspex: a tissue-specificity calculator for gene expression data](https://www.researchsquare.com/article/rs-51998/v1)" *Preprint available at Research Square* (2020).

## Web version

tspex can be used through a web interface that is freely available online at [https://tspex.lge.ibi.unicamp.br/](https://tspex.lge.ibi.unicamp.br/). The source code of the web app can be found at [https://github.com/apcamargo/tspex-webapp/](https://github.com/apcamargo/tspex-webapp/).

## Documentation

A complete documentation for tspex can be found at [https://apcamargo.github.io/tspex/](https://apcamargo.github.io/tspex/).

## Installation

There are two ways to install tspex:

- Using pip:

```
pip install tspex
```

- Using conda:

```
conda install -c conda-forge -c bioconda tspex
```


## Python API tutorial

For a detailed guide on how to use the Python API, please check the [Jupyter notebook tutorial](https://github.com/apcamargo/tspex/blob/master/docs/python_api.ipynb).


## Command-line interface

tspex can be executed from the command line using the `tspex` command. It takes an expression matrix file as input and outputs the computed tissue-specificity values.


```
usage: tspex [-h] [-l] [-d] [-t THRESHOLD] input_file output_file method

Compute gene tissue-specificity from an expression matrix and save the output.

positional arguments:
  input_file            Expression matrix file in the TSV, CSV or Excel
                        formats.
  output_file           Output TSV file containing tissue-specificity values.
  method                Tissue-specificity metric. Allowed values are:
                        "counts", "tau", "gini", "simpson",
                        "shannon_specificity", "roku_specificity", "tsi",
                        "zscore", "spm", "spm_dpm", "js_specificity",
                        "js_specificity_dpm".

optional arguments:
  -h, --help            show this help message and exit
  --version             show program's version number and exit
  -l, --log             Log-transform expression values. (default: False)
  -d, --disable_transformation
                        By default, tissue-specificity values are transformed
                        so that they range from 0 (perfectly ubiquitous) to 1
                        (perfectly tissue-specific). If this parameter is
                        used, transformation will be disabled and each metric
                        will have have a diferent range of possible values.
                        (default: False)
  -t THRESHOLD, --threshold THRESHOLD
                        Threshold to be used with the "counts" metric. If
                        another method is chosen, this parameter will be
                        ignored. (default: 0)
```

### Examples

- Using the `spm` metric to compute tissue-specificity values from a log-transformed expression matrix:

```
tspex --log gene_expression.tsv tspex_spm.tsv spm
```

- Using the `counts` method to compute tissue-specificity by counting the number of tissues in which the gene expression is greater than 10:

```
tspex --threshold 10 gene_expression.tsv tspex_counts.tsv counts
```

- Using the `zscore` without transformation to quantify tissue-specificity as the number of standard deviations away from the mean gene expression:

```
tspex --disable_transformation gene_expression.tsv tspex_zscore.tsv zscore
```
            

Raw data

            {
    "_id": null,
    "home_page": "https://apcamargo.github.io/tspex/",
    "name": "tspex",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": "",
    "keywords": "bioinformatics,gene expression,tissue-specificity,transcriptomics",
    "author": "Antonio Pedro Camargo",
    "author_email": "antoniop.camargo@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/55/15/420249f5ce8f62cf882f840a79fedb2e70a57660e14766273ee3a8125744/tspex-0.6.3.tar.gz",
    "platform": null,
    "description": "# tspex\n\n[![DOI](https://img.shields.io/badge/DOI-10.21203%2Frs.3.rs--51998%2Fv1-red)](https://doi.org/10.21203/rs.3.rs-51998/v1)\n[![PyPI](https://img.shields.io/pypi/v/tspex.svg?label=PyPI&color=green)](https://pypi.python.org/pypi/tspex)\n[![Conda](https://img.shields.io/conda/vn/bioconda/tspex.svg?label=Conda&color=green)](https://anaconda.org/bioconda/tspex)\n[![PyPI downloads](https://img.shields.io/pypi/dm/tspex?label=PyPI%20downloads&color=blue)](https://pypi.python.org/pypi/tspex)\n[![Conda downloads](https://img.shields.io/conda/dn/bioconda/tspex.svg?label=Conda%20downloads&color=blue)](https://anaconda.org/bioconda/tspex)\n\n- [Overview](#overview)\n- [Citation](#citation)\n- [Documentation](#documentation)\n- [Installation](#installation)\n- [Python API tutorial](#python-api-tutorial)\n- [Command-line interface](#command-line-interface)\n- [Examples](#examples)\n\n## Overview\n\ntspex is a tissue-specificity calculator tool. It provides both an easy-to-use object-oriented Python API and a command-line interface (CLI) for calculating a variety of tissue-specificity metrics from gene expression data.\n\ntspex features include:\n  - Twelve different tissue-specificity metrics.\n  - Integration with popular data analysis libraries, such as NumPy, SciPy, and pandas.\n  - Visualization functions.\n  - Support for Jupyter notebooks.\n\n\n## Citation\n\nIf you use tspex in your research, it would be appreciated if you could cite it.\n\n> Camargo, A. P., Vasconcelos, A. A., Fiamenghi, M. B., Pereira, G. A. G. & Carazzolle, M. F.. \"[tspex: a tissue-specificity calculator for gene expression data](https://www.researchsquare.com/article/rs-51998/v1)\" *Preprint available at Research Square* (2020).\n\n## Web version\n\ntspex can be used through a web interface that is freely available online at [https://tspex.lge.ibi.unicamp.br/](https://tspex.lge.ibi.unicamp.br/). The source code of the web app can be found at [https://github.com/apcamargo/tspex-webapp/](https://github.com/apcamargo/tspex-webapp/).\n\n## Documentation\n\nA complete documentation for tspex can be found at [https://apcamargo.github.io/tspex/](https://apcamargo.github.io/tspex/).\n\n## Installation\n\nThere are two ways to install tspex:\n\n- Using pip:\n\n```\npip install tspex\n```\n\n- Using conda:\n\n```\nconda install -c conda-forge -c bioconda tspex\n```\n\n\n## Python API tutorial\n\nFor a detailed guide on how to use the Python API, please check the [Jupyter notebook tutorial](https://github.com/apcamargo/tspex/blob/master/docs/python_api.ipynb).\n\n\n## Command-line interface\n\ntspex can be executed from the command line using the `tspex` command. It takes an expression matrix file as input and outputs the computed tissue-specificity values.\n\n\n```\nusage: tspex [-h] [-l] [-d] [-t THRESHOLD] input_file output_file method\n\nCompute gene tissue-specificity from an expression matrix and save the output.\n\npositional arguments:\n  input_file            Expression matrix file in the TSV, CSV or Excel\n                        formats.\n  output_file           Output TSV file containing tissue-specificity values.\n  method                Tissue-specificity metric. Allowed values are:\n                        \"counts\", \"tau\", \"gini\", \"simpson\",\n                        \"shannon_specificity\", \"roku_specificity\", \"tsi\",\n                        \"zscore\", \"spm\", \"spm_dpm\", \"js_specificity\",\n                        \"js_specificity_dpm\".\n\noptional arguments:\n  -h, --help            show this help message and exit\n  --version             show program's version number and exit\n  -l, --log             Log-transform expression values. (default: False)\n  -d, --disable_transformation\n                        By default, tissue-specificity values are transformed\n                        so that they range from 0 (perfectly ubiquitous) to 1\n                        (perfectly tissue-specific). If this parameter is\n                        used, transformation will be disabled and each metric\n                        will have have a diferent range of possible values.\n                        (default: False)\n  -t THRESHOLD, --threshold THRESHOLD\n                        Threshold to be used with the \"counts\" metric. If\n                        another method is chosen, this parameter will be\n                        ignored. (default: 0)\n```\n\n### Examples\n\n- Using the `spm` metric to compute tissue-specificity values from a log-transformed expression matrix:\n\n```\ntspex --log gene_expression.tsv tspex_spm.tsv spm\n```\n\n- Using the `counts` method to compute tissue-specificity by counting the number of tissues in which the gene expression is greater than 10:\n\n```\ntspex --threshold 10 gene_expression.tsv tspex_counts.tsv counts\n```\n\n- Using the `zscore` without transformation to quantify tissue-specificity as the number of standard deviations away from the mean gene expression:\n\n```\ntspex --disable_transformation gene_expression.tsv tspex_zscore.tsv zscore\n```",
    "bugtrack_url": null,
    "license": "GNU General Public License v3.0",
    "summary": "A Python package for calculating tissue-specificity metrics for gene expression.",
    "version": "0.6.3",
    "project_urls": {
        "Homepage": "https://apcamargo.github.io/tspex/"
    },
    "split_keywords": [
        "bioinformatics",
        "gene expression",
        "tissue-specificity",
        "transcriptomics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5515420249f5ce8f62cf882f840a79fedb2e70a57660e14766273ee3a8125744",
                "md5": "b6c4e12406ea1bf45850803f738c3797",
                "sha256": "315bfa1f60ea582777c549313cad9e9da0a4d11c5f69a6fc767bd0823dc46316"
            },
            "downloads": -1,
            "filename": "tspex-0.6.3.tar.gz",
            "has_sig": false,
            "md5_digest": "b6c4e12406ea1bf45850803f738c3797",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 24926,
            "upload_time": "2023-07-04T18:02:08",
            "upload_time_iso_8601": "2023-07-04T18:02:08.536169Z",
            "url": "https://files.pythonhosted.org/packages/55/15/420249f5ce8f62cf882f840a79fedb2e70a57660e14766273ee3a8125744/tspex-0.6.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-04 18:02:08",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "tspex"
}
        
Elapsed time: 2.36208s