[![DOI](https://zenodo.org/badge/DOI/10.2139/ssrn.4642939.svg)](http://dx.doi.org/10.2139/ssrn.4642939)
[![DOI](https://zenodo.org/badge/786866970.svg)](https://zenodo.org/doi/10.5281/zenodo.11071327)
# Citation
Pedro H H Coimbra, Benjamin Loubet, Olivier Laurent, Matthias Mauder, Bernard Heinesch, Jonathan Bitton, Jeremie Depuydt, Pauline Buysse. Improvement of CO2 Flux Quality Through Wavelet-Based Eddy Covariance: A New Method for Partitioning Respiration and Photosynthesis. http://dx.doi.org/10.2139/ssrn.4642939
\* corresponding author: pedro-henrique.herig-coimbra@inrae.fr
# Getting started
1. Setup python.\
(optional) Create python environment, with anaconda prompt run `conda create -n wavec`\
(optional) Activate new environement, `activate wavec`\
Install python library, `pip install waveletec`
2. Run EddyPro, saving level 6 raw data. \
To do this go in Advanced Settings (top menu) > Output Files (left menu) > Processed raw data (bottom);\
Then select Time series on "level 6 (after time lag compensation)";\
Select all variables;\
Proceed as usual running on "Advanced Mode".
3. Follow launcher.ipynb
#### If directly cloning github
1. Setup python.\
(option 1) install anaconda, and run `conda create -n wavec --file requirements.txt`\
(option 2) install anaconda, and run `conda create -f environment.yml`
# Example
For an example follow the [launcher_sample.ipynb](https://github.com/pedrohenriquecoimbra/wavelete-ec/blob/latest/sample/FR-Gri_20220514/launcher_sample.ipynb) file in folder sample\FR-Gri_20220514.
Raw data
{
"_id": null,
"home_page": "https://github.com/pedrohenriquecoimbra/wavelete-ec",
"name": "waveletec",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "EC, partitionning, wavelet",
"author": "Pedro Henrique Coimbra",
"author_email": "pedro-henrique.herig-coimbra@inrae.fr",
"download_url": "https://files.pythonhosted.org/packages/b0/2e/da89f12afa98c3041cb2c5f4f53b949bf048d6ea887433548f12c7d666b2/waveletec-0.2.1.0.4.tar.gz",
"platform": "any",
"description": "[![DOI](https://zenodo.org/badge/DOI/10.2139/ssrn.4642939.svg)](http://dx.doi.org/10.2139/ssrn.4642939)\r\n\r\n[![DOI](https://zenodo.org/badge/786866970.svg)](https://zenodo.org/doi/10.5281/zenodo.11071327)\r\n\r\n# Citation\r\n\r\nPedro H H Coimbra, Benjamin Loubet, Olivier Laurent, Matthias Mauder, Bernard Heinesch, Jonathan Bitton, Jeremie Depuydt, Pauline Buysse. Improvement of CO2 Flux Quality Through Wavelet-Based Eddy Covariance: A New Method for Partitioning Respiration and Photosynthesis. http://dx.doi.org/10.2139/ssrn.4642939\r\n\r\n\\* corresponding author: pedro-henrique.herig-coimbra@inrae.fr\r\n\r\n# Getting started\r\n\r\n1. Setup python.\\\r\n(optional) Create python environment, with anaconda prompt run `conda create -n wavec`\\\r\n(optional) Activate new environement, `activate wavec`\\\r\nInstall python library, `pip install waveletec`\r\n\r\n2. Run EddyPro, saving level 6 raw data. \\\r\nTo do this go in Advanced Settings (top menu) > Output Files (left menu) > Processed raw data (bottom);\\\r\nThen select Time series on \"level 6 (after time lag compensation)\";\\\r\nSelect all variables;\\\r\nProceed as usual running on \"Advanced Mode\".\r\n\r\n3. Follow launcher.ipynb\r\n\r\n#### If directly cloning github\r\n\r\n1. Setup python.\\\r\n(option 1) install anaconda, and run `conda create -n wavec --file requirements.txt`\\\r\n(option 2) install anaconda, and run `conda create -f environment.yml`\r\n\r\n# Example\r\n\r\nFor an example follow the [launcher_sample.ipynb](https://github.com/pedrohenriquecoimbra/wavelete-ec/blob/latest/sample/FR-Gri_20220514/launcher_sample.ipynb) file in folder sample\\FR-Gri_20220514.\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Wavelet-based Eddy Covariance Written by pedrohenriquecoimbra",
"version": "0.2.1.0.4",
"project_urls": {
"Homepage": "https://github.com/pedrohenriquecoimbra/wavelete-ec"
},
"split_keywords": [
"ec",
" partitionning",
" wavelet"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7c77f47939538718977ffd09571d24b05396d48f13840d28af4fc2e260da9d45",
"md5": "33342bdc3ee85e76c17403ad0f067f7e",
"sha256": "168eab8a1834278d7d9d8258ab1b1904c709f5478cb8a156b9685dd3aa4331d1"
},
"downloads": -1,
"filename": "waveletec-0.2.1.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "33342bdc3ee85e76c17403ad0f067f7e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 40688,
"upload_time": "2024-11-14T15:25:57",
"upload_time_iso_8601": "2024-11-14T15:25:57.071360Z",
"url": "https://files.pythonhosted.org/packages/7c/77/f47939538718977ffd09571d24b05396d48f13840d28af4fc2e260da9d45/waveletec-0.2.1.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b02eda89f12afa98c3041cb2c5f4f53b949bf048d6ea887433548f12c7d666b2",
"md5": "27d270a9c02b8f475d398951a135b16d",
"sha256": "f76826fef4b7552e7c3d29643c182fae3bd6814eeffaa95a869d3d90fe869d8c"
},
"downloads": -1,
"filename": "waveletec-0.2.1.0.4.tar.gz",
"has_sig": false,
"md5_digest": "27d270a9c02b8f475d398951a135b16d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 38600,
"upload_time": "2024-11-14T15:25:58",
"upload_time_iso_8601": "2024-11-14T15:25:58.860285Z",
"url": "https://files.pythonhosted.org/packages/b0/2e/da89f12afa98c3041cb2c5f4f53b949bf048d6ea887433548f12c7d666b2/waveletec-0.2.1.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-14 15:25:58",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pedrohenriquecoimbra",
"github_project": "wavelete-ec",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "asttokens",
"specs": []
},
{
"name": "colorama",
"specs": []
},
{
"name": "comm",
"specs": []
},
{
"name": "contourpy",
"specs": [
[
"==",
"1.2.1"
]
]
},
{
"name": "cycler",
"specs": [
[
"==",
"0.12.1"
]
]
},
{
"name": "debugpy",
"specs": []
},
{
"name": "decorator",
"specs": []
},
{
"name": "exceptiongroup",
"specs": []
},
{
"name": "executing",
"specs": []
},
{
"name": "fonttools",
"specs": [
[
"==",
"4.51.0"
]
]
},
{
"name": "importlib_metadata",
"specs": []
},
{
"name": "ipykernel",
"specs": []
},
{
"name": "ipython",
"specs": []
},
{
"name": "jedi",
"specs": []
},
{
"name": "joblib",
"specs": [
[
"==",
"1.4.0"
]
]
},
{
"name": "jupyter_client",
"specs": []
},
{
"name": "jupyter_core",
"specs": []
},
{
"name": "kiwisolver",
"specs": [
[
"==",
"1.4.5"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"==",
"3.8.4"
]
]
},
{
"name": "matplotlib-inline",
"specs": []
},
{
"name": "nest_asyncio",
"specs": []
},
{
"name": "numpy",
"specs": [
[
"==",
"1.26.4"
]
]
},
{
"name": "packaging",
"specs": []
},
{
"name": "pandas",
"specs": [
[
"==",
"2.2.2"
]
]
},
{
"name": "parso",
"specs": []
},
{
"name": "pickleshare",
"specs": []
},
{
"name": "pillow",
"specs": [
[
"==",
"10.3.0"
]
]
},
{
"name": "platformdirs",
"specs": []
},
{
"name": "prompt-toolkit",
"specs": []
},
{
"name": "psutil",
"specs": []
},
{
"name": "pure-eval",
"specs": []
},
{
"name": "Pygments",
"specs": []
},
{
"name": "pyparsing",
"specs": [
[
"==",
"3.1.2"
]
]
},
{
"name": "python-dateutil",
"specs": []
},
{
"name": "pytz",
"specs": [
[
"==",
"2024.1"
]
]
},
{
"name": "PyWavelets",
"specs": [
[
"==",
"1.6.0"
]
]
},
{
"name": "pywin32",
"specs": [
[
"==",
"306"
]
]
},
{
"name": "PyYAML",
"specs": [
[
"==",
"6.0.1"
]
]
},
{
"name": "pyzmq",
"specs": []
},
{
"name": "scikit-learn",
"specs": [
[
"==",
"1.4.2"
]
]
},
{
"name": "scipy",
"specs": [
[
"==",
"1.13.0"
]
]
},
{
"name": "setuptools",
"specs": [
[
"==",
"69.5.1"
]
]
},
{
"name": "six",
"specs": []
},
{
"name": "stack-data",
"specs": []
},
{
"name": "threadpoolctl",
"specs": [
[
"==",
"3.4.0"
]
]
},
{
"name": "tornado",
"specs": []
},
{
"name": "traitlets",
"specs": []
},
{
"name": "typing_extensions",
"specs": []
},
{
"name": "tzdata",
"specs": [
[
"==",
"2024.1"
]
]
},
{
"name": "wcwidth",
"specs": []
},
{
"name": "wheel",
"specs": [
[
"==",
"0.43.0"
]
]
},
{
"name": "zipp",
"specs": []
}
],
"lcname": "waveletec"
}