<div align="center">
<h2>
Yolov9-Pip: Packaged version of the Yolov9 repository
</h2>
<h4>
<img width="600" alt="teaser" src="docs\paper.png">
</div>
<p align="center">
<a href="https://pypi.org/project/yolov9pip" target="_blank">
<img src="https://img.shields.io/pypi/v/yolov9pip?color=%2334D058&label=pypi%20package" alt="Package version">
</a>
<a href="https://pypi.org/project/yolov9pip" target="_blank">
<img src="https://img.shields.io/pypi/pyversions/yolov9pip.svg?color=%2334D058" alt="Supported Python versions">
</a>
<a href="https://pypi.org/project/yolov9pip" target="_blank">
<img src="https://img.shields.io/pypi/status/yolov9pip?color=orange" alt="Project Status">
</a>
<a href="https://results.pre-commit.ci/latest/github/kadirnaryolov9-pip/main" target="_blank">
<img src="https://results.pre-commit.ci/badge/github/kadirnar/yolov9-pip/main.svg" alt="pre-commit.ci">
</a>
</p>
This repo is a packaged version of the [Yolov9](https://github.com/WongKinYiu/yolov9) model.
### ⭐ Installation
```
pip install yolov9pip
```
### 🌠 Yolov9 Inference
```python
import yolov9
# load pretrained or custom model
model = yolov9.load(
"yolov9-c.pt",
device="cpu",
)
# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.classes = None # (optional list) filter by class
# set image
imgs = "data/zidane.jpg"
# perform inference
results = model(imgs)
# inference with larger input size and test time augmentation
results = model(img, size=640)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# show detection bounding boxes on image
results.show()
```
## 😍 Contributing
```bash
pip install -r dev-requirements.txt
pre-commit install
pre-commit run --all-files
```
## 🤗 Citation
```bibtex
@article{wang2024yolov9,
title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark},
booktitle={arXiv preprint arXiv:2402.13616},
year={2024}
}
```
### Acknowledgement
A part of the code is borrowed from [Yolov5-pip](https://github.com/fcakyon/yolov5-pip). Many thanks for their wonderful works.
Raw data
{
"_id": null,
"home_page": "https://github.com/kadirnar/yolov9-pip",
"name": "yolov9pip",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "",
"author": "kadirnar",
"author_email": "kadir.nar@hotmail.com",
"download_url": "https://files.pythonhosted.org/packages/44/f4/c665d9b8595fa80b3826014cd9da84400e7fba879cbfd6dc5341d757fff7/yolov9pip-0.0.4.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n<h2>\n Yolov9-Pip: Packaged version of the Yolov9 repository\n</h2>\n<h4>\n <img width=\"600\" alt=\"teaser\" src=\"docs\\paper.png\">\n</div>\n<p align=\"center\">\n<a href=\"https://pypi.org/project/yolov9pip\" target=\"_blank\">\n <img src=\"https://img.shields.io/pypi/v/yolov9pip?color=%2334D058&label=pypi%20package\" alt=\"Package version\">\n</a>\n<a href=\"https://pypi.org/project/yolov9pip\" target=\"_blank\">\n <img src=\"https://img.shields.io/pypi/pyversions/yolov9pip.svg?color=%2334D058\" alt=\"Supported Python versions\">\n</a>\n<a href=\"https://pypi.org/project/yolov9pip\" target=\"_blank\">\n <img src=\"https://img.shields.io/pypi/status/yolov9pip?color=orange\" alt=\"Project Status\">\n</a>\n<a href=\"https://results.pre-commit.ci/latest/github/kadirnaryolov9-pip/main\" target=\"_blank\">\n <img src=\"https://results.pre-commit.ci/badge/github/kadirnar/yolov9-pip/main.svg\" alt=\"pre-commit.ci\">\n</a>\n</p>\n\nThis repo is a packaged version of the [Yolov9](https://github.com/WongKinYiu/yolov9) model.\n\n### \u2b50 Installation\n\n```\npip install yolov9pip\n```\n\n### \ud83c\udf20 Yolov9 Inference\n\n```python\nimport yolov9\n\n# load pretrained or custom model\nmodel = yolov9.load(\n \"yolov9-c.pt\",\n device=\"cpu\",\n)\n\n# set model parameters\nmodel.conf = 0.25 # NMS confidence threshold\nmodel.iou = 0.45 # NMS IoU threshold\nmodel.classes = None # (optional list) filter by class\n\n# set image\nimgs = \"data/zidane.jpg\"\n\n# perform inference\nresults = model(imgs)\n\n# inference with larger input size and test time augmentation\nresults = model(img, size=640)\n\n# parse results\npredictions = results.pred[0]\nboxes = predictions[:, :4] # x1, y1, x2, y2\nscores = predictions[:, 4]\ncategories = predictions[:, 5]\n\n# show detection bounding boxes on image\nresults.show()\n```\n\n## \ud83d\ude0d Contributing\n\n```bash\npip install -r dev-requirements.txt\npre-commit install\npre-commit run --all-files\n```\n\n## \ud83e\udd17 Citation\n\n```bibtex\n@article{wang2024yolov9,\n title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},\n author={Wang, Chien-Yao and Liao, Hong-Yuan Mark},\n booktitle={arXiv preprint arXiv:2402.13616},\n year={2024}\n}\n```\n\n### Acknowledgement\n\nA part of the code is borrowed from [Yolov5-pip](https://github.com/fcakyon/yolov5-pip). Many thanks for their wonderful works.\n",
"bugtrack_url": null,
"license": "Apache License 2.0",
"summary": "yolov9pip",
"version": "0.0.4",
"project_urls": {
"Homepage": "https://github.com/kadirnar/yolov9-pip"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "44f4c665d9b8595fa80b3826014cd9da84400e7fba879cbfd6dc5341d757fff7",
"md5": "7d7ca8196b3ead3bbe9c1373ecdf206d",
"sha256": "3b14c5dd040db0d38da5ae580907e716c4fada9c672cbcee98719d476a5c8336"
},
"downloads": -1,
"filename": "yolov9pip-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "7d7ca8196b3ead3bbe9c1373ecdf206d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 222275,
"upload_time": "2024-02-22T22:36:11",
"upload_time_iso_8601": "2024-02-22T22:36:11.300838Z",
"url": "https://files.pythonhosted.org/packages/44/f4/c665d9b8595fa80b3826014cd9da84400e7fba879cbfd6dc5341d757fff7/yolov9pip-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-22 22:36:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kadirnar",
"github_project": "yolov9-pip",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "gitpython",
"specs": []
},
{
"name": "ipython",
"specs": []
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.2.2"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.18.5"
]
]
},
{
"name": "opencv-python",
"specs": [
[
">=",
"4.1.1"
]
]
},
{
"name": "Pillow",
"specs": [
[
">=",
"7.1.2"
]
]
},
{
"name": "psutil",
"specs": []
},
{
"name": "PyYAML",
"specs": [
[
">=",
"5.3.1"
]
]
},
{
"name": "requests",
"specs": [
[
">=",
"2.23.0"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.4.1"
]
]
},
{
"name": "thop",
"specs": [
[
">=",
"0.1.1"
]
]
},
{
"name": "torch",
"specs": [
[
">=",
"1.7.0"
]
]
},
{
"name": "torchvision",
"specs": [
[
">=",
"0.8.1"
]
]
},
{
"name": "tqdm",
"specs": [
[
">=",
"4.64.0"
]
]
},
{
"name": "tensorboard",
"specs": [
[
">=",
"2.4.1"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"1.1.4"
]
]
},
{
"name": "seaborn",
"specs": [
[
">=",
"0.11.0"
]
]
},
{
"name": "albumentations",
"specs": [
[
">=",
"1.0.3"
]
]
},
{
"name": "pycocotools",
"specs": [
[
">=",
"2.0"
]
]
}
],
"lcname": "yolov9pip"
}