yolov9pip


Nameyolov9pip JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/kadirnar/yolov9-pip
Summaryyolov9pip
upload_time2024-02-22 22:36:11
maintainer
docs_urlNone
authorkadirnar
requires_python>=3.8
licenseApache License 2.0
keywords
VCS
bugtrack_url
requirements gitpython ipython matplotlib numpy opencv-python Pillow psutil PyYAML requests scipy thop torch torchvision tqdm tensorboard pandas seaborn albumentations pycocotools
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<h2>
     Yolov9-Pip: Packaged version of the Yolov9 repository
</h2>
<h4>
     <img width="600" alt="teaser" src="docs\paper.png">
</div>
<p align="center">
<a href="https://pypi.org/project/yolov9pip" target="_blank">
    <img src="https://img.shields.io/pypi/v/yolov9pip?color=%2334D058&label=pypi%20package" alt="Package version">
</a>
<a href="https://pypi.org/project/yolov9pip" target="_blank">
    <img src="https://img.shields.io/pypi/pyversions/yolov9pip.svg?color=%2334D058" alt="Supported Python versions">
</a>
<a href="https://pypi.org/project/yolov9pip" target="_blank">
    <img src="https://img.shields.io/pypi/status/yolov9pip?color=orange" alt="Project Status">
</a>
<a href="https://results.pre-commit.ci/latest/github/kadirnaryolov9-pip/main" target="_blank">
    <img src="https://results.pre-commit.ci/badge/github/kadirnar/yolov9-pip/main.svg" alt="pre-commit.ci">
</a>
</p>

This repo is a packaged version of the [Yolov9](https://github.com/WongKinYiu/yolov9) model.

### ⭐ Installation

```
pip install yolov9pip
```

### 🌠 Yolov9 Inference

```python
import yolov9

# load pretrained or custom model
model = yolov9.load(
    "yolov9-c.pt",
    device="cpu",
)

# set model parameters
model.conf = 0.25  # NMS confidence threshold
model.iou = 0.45  # NMS IoU threshold
model.classes = None  # (optional list) filter by class

# set image
imgs = "data/zidane.jpg"

# perform inference
results = model(imgs)

# inference with larger input size and test time augmentation
results = model(img, size=640)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4]  # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()
```

## 😍 Contributing

```bash
pip install -r dev-requirements.txt
pre-commit install
pre-commit run --all-files
```

## 🤗 Citation

```bibtex
@article{wang2024yolov9,
  title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
  author={Wang, Chien-Yao  and Liao, Hong-Yuan Mark},
  booktitle={arXiv preprint arXiv:2402.13616},
  year={2024}
}
```

### Acknowledgement

A part of the code is borrowed from [Yolov5-pip](https://github.com/fcakyon/yolov5-pip). Many thanks for their wonderful works.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kadirnar/yolov9-pip",
    "name": "yolov9pip",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "",
    "author": "kadirnar",
    "author_email": "kadir.nar@hotmail.com",
    "download_url": "https://files.pythonhosted.org/packages/44/f4/c665d9b8595fa80b3826014cd9da84400e7fba879cbfd6dc5341d757fff7/yolov9pip-0.0.4.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n<h2>\n     Yolov9-Pip: Packaged version of the Yolov9 repository\n</h2>\n<h4>\n     <img width=\"600\" alt=\"teaser\" src=\"docs\\paper.png\">\n</div>\n<p align=\"center\">\n<a href=\"https://pypi.org/project/yolov9pip\" target=\"_blank\">\n    <img src=\"https://img.shields.io/pypi/v/yolov9pip?color=%2334D058&label=pypi%20package\" alt=\"Package version\">\n</a>\n<a href=\"https://pypi.org/project/yolov9pip\" target=\"_blank\">\n    <img src=\"https://img.shields.io/pypi/pyversions/yolov9pip.svg?color=%2334D058\" alt=\"Supported Python versions\">\n</a>\n<a href=\"https://pypi.org/project/yolov9pip\" target=\"_blank\">\n    <img src=\"https://img.shields.io/pypi/status/yolov9pip?color=orange\" alt=\"Project Status\">\n</a>\n<a href=\"https://results.pre-commit.ci/latest/github/kadirnaryolov9-pip/main\" target=\"_blank\">\n    <img src=\"https://results.pre-commit.ci/badge/github/kadirnar/yolov9-pip/main.svg\" alt=\"pre-commit.ci\">\n</a>\n</p>\n\nThis repo is a packaged version of the [Yolov9](https://github.com/WongKinYiu/yolov9) model.\n\n### \u2b50 Installation\n\n```\npip install yolov9pip\n```\n\n### \ud83c\udf20 Yolov9 Inference\n\n```python\nimport yolov9\n\n# load pretrained or custom model\nmodel = yolov9.load(\n    \"yolov9-c.pt\",\n    device=\"cpu\",\n)\n\n# set model parameters\nmodel.conf = 0.25  # NMS confidence threshold\nmodel.iou = 0.45  # NMS IoU threshold\nmodel.classes = None  # (optional list) filter by class\n\n# set image\nimgs = \"data/zidane.jpg\"\n\n# perform inference\nresults = model(imgs)\n\n# inference with larger input size and test time augmentation\nresults = model(img, size=640)\n\n# parse results\npredictions = results.pred[0]\nboxes = predictions[:, :4]  # x1, y1, x2, y2\nscores = predictions[:, 4]\ncategories = predictions[:, 5]\n\n# show detection bounding boxes on image\nresults.show()\n```\n\n## \ud83d\ude0d Contributing\n\n```bash\npip install -r dev-requirements.txt\npre-commit install\npre-commit run --all-files\n```\n\n## \ud83e\udd17 Citation\n\n```bibtex\n@article{wang2024yolov9,\n  title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},\n  author={Wang, Chien-Yao  and Liao, Hong-Yuan Mark},\n  booktitle={arXiv preprint arXiv:2402.13616},\n  year={2024}\n}\n```\n\n### Acknowledgement\n\nA part of the code is borrowed from [Yolov5-pip](https://github.com/fcakyon/yolov5-pip). Many thanks for their wonderful works.\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "yolov9pip",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://github.com/kadirnar/yolov9-pip"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "44f4c665d9b8595fa80b3826014cd9da84400e7fba879cbfd6dc5341d757fff7",
                "md5": "7d7ca8196b3ead3bbe9c1373ecdf206d",
                "sha256": "3b14c5dd040db0d38da5ae580907e716c4fada9c672cbcee98719d476a5c8336"
            },
            "downloads": -1,
            "filename": "yolov9pip-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "7d7ca8196b3ead3bbe9c1373ecdf206d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 222275,
            "upload_time": "2024-02-22T22:36:11",
            "upload_time_iso_8601": "2024-02-22T22:36:11.300838Z",
            "url": "https://files.pythonhosted.org/packages/44/f4/c665d9b8595fa80b3826014cd9da84400e7fba879cbfd6dc5341d757fff7/yolov9pip-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-22 22:36:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kadirnar",
    "github_project": "yolov9-pip",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "gitpython",
            "specs": []
        },
        {
            "name": "ipython",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.2.2"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.18.5"
                ]
            ]
        },
        {
            "name": "opencv-python",
            "specs": [
                [
                    ">=",
                    "4.1.1"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    ">=",
                    "7.1.2"
                ]
            ]
        },
        {
            "name": "psutil",
            "specs": []
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    ">=",
                    "5.3.1"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.23.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.4.1"
                ]
            ]
        },
        {
            "name": "thop",
            "specs": [
                [
                    ">=",
                    "0.1.1"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.7.0"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    ">=",
                    "0.8.1"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    ">=",
                    "4.64.0"
                ]
            ]
        },
        {
            "name": "tensorboard",
            "specs": [
                [
                    ">=",
                    "2.4.1"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.1.4"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.11.0"
                ]
            ]
        },
        {
            "name": "albumentations",
            "specs": [
                [
                    ">=",
                    "1.0.3"
                ]
            ]
        },
        {
            "name": "pycocotools",
            "specs": [
                [
                    ">=",
                    "2.0"
                ]
            ]
        }
    ],
    "lcname": "yolov9pip"
}
        
Elapsed time: 0.48466s