acet


Nameacet JSON
Version 1.0.10 PyPI version JSON
download
home_pageNone
SummaryAgentic Context Toolkit: context delta learning for adaptive LLM agents
upload_time2025-10-20 23:49:36
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12
licenseMIT
keywords llm agents context rag ai machine-learning context-engineering self-improving
VCS
bugtrack_url
requirements pydantic httpx tiktoken numpy aiosqlite sentence-transformers sqlalchemy structlog python-dotenv openai anthropic litellm ollama faiss-cpu chromadb psycopg2-binary pgvector langchain langchain-community llama-index pytest pytest-cov pytest-asyncio pytest-benchmark mypy ruff black sphinx sphinx-rtd-theme myst-parser matplotlib redis
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![CI](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/ci.yml/badge.svg)](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/ci.yml) [![Docs](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/docs.yml/badge.svg)](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/docs.yml) ![Publish](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/publish.yml/badge.svg?event=push)
 [![Coverage](https://img.shields.io/badge/coverage-90%25-brightgreen.svg)](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/ci.yml)
[![PyPI Downloads](https://static.pepy.tech/personalized-badge/acet?period=total&units=NONE&left_color=GRAY&right_color=BRIGHTGREEN&left_text=downloads)](https://pepy.tech/projects/acet)
# Agentic Context Engineering Toolkit

Research-oriented framework for Agentic Context Engineering. It captures, ranks, and reuses "context deltas" from LLM interactions so agents adapt without retraining, following the methodology described in [Agentic Context Engineering Framework](https://www.arxiv.org/abs/2510.04618).

## Features
- LLM provider agnostic (OpenAI, Anthropic, LiteLLM, Ollama, custom wrappers)
- Storage backend agnostic (memory, SQLite, Postgres/pgvector, extensible interfaces)
- Token budget management, retrieval & ranking, reflection, and curation pipelines
- Ready for Python 3.12 with strict typing, async workflows, and modern tooling

## Getting Started
```bash
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
pip install -r requirements.txt
```

## Project Layout
```
.
  acet/               # Library source (packages added per phase)
  benchmarks/         # Performance and benchmark suites
  docs/               # Documentation site sources
  examples/           # Usage examples and sample apps
  tests/              # Unit, integration, and benchmark tests
```

## Development Workflow
1. Create/activate the local virtual environment.
2. Install dependencies with `pip install -r requirements.txt`.
3. Run format and lint checks: `black .` and `ruff check`.
4. Run type checks: `mypy --strict .`.
5. Run tests: `pytest --cov=acet`.

## Performance Snapshot
- **Delta retrieval (250 active deltas)**: ~2 ms mean latency (`tests/benchmarks/test_delta_retrieval.py`)
- **SQLite save/query (300 staged deltas)**: ~23 ms mean latency (`tests/benchmarks/test_storage_throughput.py`)
- **Curator dedup (300 proposed insights, 30% duplicates)**: ~140 ms mean latency (`tests/benchmarks/test_curator_throughput.py`)

All benchmarks are reproducible via the CLI harnesses under `benchmarks/`. For example:
```bash
python benchmarks/delta_retrieval.py --iterations 30 --plot benchmarks/artifacts/delta_latency.png
python benchmarks/storage_throughput.py --backend all --iterations 30 --plot benchmarks/artifacts/storage_latency.png
python benchmarks/curator_throughput.py --proposals 300 --duplicate-ratio 0.3 --iterations 20 --plot benchmarks/artifacts/curator_latency.png
```
Adjust the parameters or swap in your production embeddings/backends to profile your deployment.






            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "acet",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": "llm, agents, context, rag, ai, machine-learning, context-engineering, self-improving",
    "author": null,
    "author_email": "Lionel <lioarce1@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/43/d7/e8c35cc2c07aa5bd585029ecc119dac502d92673247fb5bc872f4eef91a1/acet-1.0.10.tar.gz",
    "platform": null,
    "description": "[![CI](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/ci.yml/badge.svg)](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/ci.yml) [![Docs](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/docs.yml/badge.svg)](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/docs.yml) ![Publish](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/publish.yml/badge.svg?event=push)\n [![Coverage](https://img.shields.io/badge/coverage-90%25-brightgreen.svg)](https://github.com/lioarce01/agentic-context-toolkit/actions/workflows/ci.yml)\n[![PyPI Downloads](https://static.pepy.tech/personalized-badge/acet?period=total&units=NONE&left_color=GRAY&right_color=BRIGHTGREEN&left_text=downloads)](https://pepy.tech/projects/acet)\n# Agentic Context Engineering Toolkit\n\nResearch-oriented framework for Agentic Context Engineering. It captures, ranks, and reuses \"context deltas\" from LLM interactions so agents adapt without retraining, following the methodology described in [Agentic Context Engineering Framework](https://www.arxiv.org/abs/2510.04618).\n\n## Features\n- LLM provider agnostic (OpenAI, Anthropic, LiteLLM, Ollama, custom wrappers)\n- Storage backend agnostic (memory, SQLite, Postgres/pgvector, extensible interfaces)\n- Token budget management, retrieval & ranking, reflection, and curation pipelines\n- Ready for Python 3.12 with strict typing, async workflows, and modern tooling\n\n## Getting Started\n```bash\npython -m venv .venv\nsource .venv/bin/activate  # On Windows: .venv\\Scripts\\activate\npip install -r requirements.txt\n```\n\n## Project Layout\n```\n.\n  acet/               # Library source (packages added per phase)\n  benchmarks/         # Performance and benchmark suites\n  docs/               # Documentation site sources\n  examples/           # Usage examples and sample apps\n  tests/              # Unit, integration, and benchmark tests\n```\n\n## Development Workflow\n1. Create/activate the local virtual environment.\n2. Install dependencies with `pip install -r requirements.txt`.\n3. Run format and lint checks: `black .` and `ruff check`.\n4. Run type checks: `mypy --strict .`.\n5. Run tests: `pytest --cov=acet`.\n\n## Performance Snapshot\n- **Delta retrieval (250 active deltas)**: ~2 ms mean latency (`tests/benchmarks/test_delta_retrieval.py`)\n- **SQLite save/query (300 staged deltas)**: ~23 ms mean latency (`tests/benchmarks/test_storage_throughput.py`)\n- **Curator dedup (300 proposed insights, 30% duplicates)**: ~140 ms mean latency (`tests/benchmarks/test_curator_throughput.py`)\n\nAll benchmarks are reproducible via the CLI harnesses under `benchmarks/`. For example:\n```bash\npython benchmarks/delta_retrieval.py --iterations 30 --plot benchmarks/artifacts/delta_latency.png\npython benchmarks/storage_throughput.py --backend all --iterations 30 --plot benchmarks/artifacts/storage_latency.png\npython benchmarks/curator_throughput.py --proposals 300 --duplicate-ratio 0.3 --iterations 20 --plot benchmarks/artifacts/curator_latency.png\n```\nAdjust the parameters or swap in your production embeddings/backends to profile your deployment.\n\n\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Agentic Context Toolkit: context delta learning for adaptive LLM agents",
    "version": "1.0.10",
    "project_urls": {
        "CHANGELOG": "https://github.com/lioarce01/agentic-context-toolkit/blob/main/CHANGELOG.md",
        "Documentation": "https://github.com/lioarce01/agentic-context-toolkit",
        "Homepage": "https://github.com/lioarce01/agentic-context-toolkit",
        "Issues": "https://github.com/lioarce01/agentic-context-toolkit/issues",
        "Repository": "https://github.com/lioarce01/agentic-context-toolkit"
    },
    "split_keywords": [
        "llm",
        " agents",
        " context",
        " rag",
        " ai",
        " machine-learning",
        " context-engineering",
        " self-improving"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ab0ae5f80b0a36030e44b0a5b034e2c1944baf31824fbdf45ddc6d7b4a150ce1",
                "md5": "ce4d892344d2f747db0fcc9813a152ca",
                "sha256": "9da911820198bd689936d1d497cd8481e7a1c160e10f33650c567ff8e64566ea"
            },
            "downloads": -1,
            "filename": "acet-1.0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ce4d892344d2f747db0fcc9813a152ca",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 35609,
            "upload_time": "2025-10-20T23:49:35",
            "upload_time_iso_8601": "2025-10-20T23:49:35.088639Z",
            "url": "https://files.pythonhosted.org/packages/ab/0a/e5f80b0a36030e44b0a5b034e2c1944baf31824fbdf45ddc6d7b4a150ce1/acet-1.0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "43d7e8c35cc2c07aa5bd585029ecc119dac502d92673247fb5bc872f4eef91a1",
                "md5": "364028aa3f957881c9f4af9a5f4e03b1",
                "sha256": "9491b66447370464a58fb25b6a109428c5a51267ac8d02984327d677364b6661"
            },
            "downloads": -1,
            "filename": "acet-1.0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "364028aa3f957881c9f4af9a5f4e03b1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 28387,
            "upload_time": "2025-10-20T23:49:36",
            "upload_time_iso_8601": "2025-10-20T23:49:36.440964Z",
            "url": "https://files.pythonhosted.org/packages/43/d7/e8c35cc2c07aa5bd585029ecc119dac502d92673247fb5bc872f4eef91a1/acet-1.0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-20 23:49:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lioarce01",
    "github_project": "agentic-context-toolkit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "pydantic",
            "specs": [
                [
                    ">=",
                    "2.9"
                ]
            ]
        },
        {
            "name": "httpx",
            "specs": [
                [
                    ">=",
                    "0.27"
                ]
            ]
        },
        {
            "name": "tiktoken",
            "specs": [
                [
                    ">=",
                    "0.8"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "2.1"
                ]
            ]
        },
        {
            "name": "aiosqlite",
            "specs": [
                [
                    ">=",
                    "0.20"
                ]
            ]
        },
        {
            "name": "sentence-transformers",
            "specs": [
                [
                    ">=",
                    "3.2"
                ]
            ]
        },
        {
            "name": "sqlalchemy",
            "specs": [
                [
                    ">=",
                    "2.0"
                ]
            ]
        },
        {
            "name": "structlog",
            "specs": [
                [
                    ">=",
                    "24.0"
                ]
            ]
        },
        {
            "name": "python-dotenv",
            "specs": [
                [
                    ">=",
                    "1.0"
                ]
            ]
        },
        {
            "name": "openai",
            "specs": [
                [
                    ">=",
                    "1.54"
                ]
            ]
        },
        {
            "name": "anthropic",
            "specs": [
                [
                    ">=",
                    "0.39"
                ]
            ]
        },
        {
            "name": "litellm",
            "specs": [
                [
                    ">=",
                    "1.52"
                ]
            ]
        },
        {
            "name": "ollama",
            "specs": [
                [
                    ">=",
                    "0.4"
                ]
            ]
        },
        {
            "name": "faiss-cpu",
            "specs": [
                [
                    ">=",
                    "1.9"
                ]
            ]
        },
        {
            "name": "chromadb",
            "specs": [
                [
                    ">=",
                    "0.5"
                ]
            ]
        },
        {
            "name": "psycopg2-binary",
            "specs": [
                [
                    ">=",
                    "2.9"
                ]
            ]
        },
        {
            "name": "pgvector",
            "specs": [
                [
                    ">=",
                    "0.3"
                ]
            ]
        },
        {
            "name": "langchain",
            "specs": [
                [
                    ">=",
                    "0.3"
                ]
            ]
        },
        {
            "name": "langchain-community",
            "specs": [
                [
                    ">=",
                    "0.3"
                ]
            ]
        },
        {
            "name": "llama-index",
            "specs": [
                [
                    ">=",
                    "0.11"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    ">=",
                    "8.3"
                ]
            ]
        },
        {
            "name": "pytest-cov",
            "specs": [
                [
                    ">=",
                    "6.0"
                ]
            ]
        },
        {
            "name": "pytest-asyncio",
            "specs": [
                [
                    ">=",
                    "0.24"
                ]
            ]
        },
        {
            "name": "pytest-benchmark",
            "specs": [
                [
                    ">=",
                    "4.0"
                ]
            ]
        },
        {
            "name": "mypy",
            "specs": [
                [
                    ">=",
                    "1.13"
                ]
            ]
        },
        {
            "name": "ruff",
            "specs": [
                [
                    ">=",
                    "0.7"
                ]
            ]
        },
        {
            "name": "black",
            "specs": [
                [
                    ">=",
                    "24.10"
                ]
            ]
        },
        {
            "name": "sphinx",
            "specs": [
                [
                    ">=",
                    "8.0"
                ]
            ]
        },
        {
            "name": "sphinx-rtd-theme",
            "specs": [
                [
                    ">=",
                    "3.0"
                ]
            ]
        },
        {
            "name": "myst-parser",
            "specs": [
                [
                    ">=",
                    "2.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.9"
                ]
            ]
        },
        {
            "name": "redis",
            "specs": [
                [
                    ">=",
                    "5.0"
                ]
            ]
        }
    ],
    "lcname": "acet"
}
        
Elapsed time: 2.51549s