aim-framework


Nameaim-framework JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/jasonviipers/aim-framework
SummaryAdaptive Intelligence Mesh - A distributed coordination system for AI deployment and interaction
upload_time2025-07-30 00:34:38
maintainerNone
docs_urlNone
authorjasonviipers
requires_python>=3.8
licenseNone
keywords ai artificial-intelligence distributed-systems mesh-network coordination agents
VCS
bugtrack_url
requirements asyncio-mqtt numpy pandas requests aiohttp websockets flask flask-cors gunicorn matplotlib plotly networkx scikit-learn pyyaml python-dotenv click pytest pytest-cov pytest-asyncio black flake8 mypy pre-commit sphinx sphinx-rtd-theme myst-parser psutil memory-profiler
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AIM Framework: Adaptive Intelligence Mesh

[![Python Version](https://img.shields.io/badge/python-3.8%2B-blue.svg)](https://python.org)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
[![Documentation](https://img.shields.io/badge/docs-latest-brightgreen.svg)](https://aim-framework.readthedocs.io/)

A distributed coordination system for AI deployment and interaction that revolutionizes how AI systems collaborate and scale.

## Overview

The AIM Framework creates a mesh network of AI agents that can:

- **Dynamic Capability Routing**: Route queries to specialized micro-agents based on context, urgency, and required expertise
- **Persistent Context Weaving**: Create "context threads" that persist across sessions and can be selectively shared between agents
- **Adaptive Resource Scaling**: Automatically spawn or hibernate agents based on demand patterns
- **Cross-Agent Learning Propagation**: Share knowledge gained by one agent across the mesh without centralized retraining
- **Confidence-Based Collaboration**: Enable agents to detect their uncertainty and automatically collaborate with other agents

The core innovation of AIM is the **Intent Graph** - a real-time graph of user intentions, project contexts, and capability needs that allows the system to anticipate requirements and pre-position resources.

## Key Features

### ๐Ÿ”€ Dynamic Capability Routing
Instead of having one large model handle everything, AIM routes queries to specialized micro-agents based on context, urgency, and required expertise. A coding question might route through a code-specialist agent, then to a security-review agent, then to a documentation agent.

### ๐Ÿงต Persistent Context Weaving
Each interaction creates "context threads" that persist across sessions and can be selectively shared between agents. Your conversation about a project continues seamlessly whether you're asking about code, design, or deployment.

### ๐Ÿ“ˆ Adaptive Resource Scaling
The mesh automatically spawns or hibernates agents based on demand patterns. During high coding activity, more programming agents activate. During research phases, more analysis agents come online.

### ๐Ÿง  Cross-Agent Learning Propagation
When one agent learns something valuable (like a common error pattern), it propagates this knowledge through the mesh without centralized retraining.

### ๐Ÿค Confidence-Based Collaboration
Agents can detect their uncertainty and automatically collaborate with other agents, creating dynamic expert panels for complex problems.

### ๐ŸŽฏ Intent Graph
Builds a real-time graph of user intentions, project contexts, and capability needs to anticipate requirements and pre-position resources.

## Installation

### From PyPI (Recommended)

```bash
pip install aim-framework
```

### From Source

```bash
git clone https://github.com/jasonviipers/aim-framework.git
cd aim-framework
pip install -e .
```

### Development Installation

```bash
git clone https://github.com/jasonviipers/aim-framework.git
cd aim-framework
pip install -e ".[dev,docs,api,visualization]"
```

## Quick Start

### 1. Basic Usage

```python
import asyncio
from aim import AIMFramework, Config

async def main():
    # Create and initialize framework
    framework = AIMFramework()
    await framework.initialize()
    
    # Create a request
    from aim import Request
    request = Request(
        user_id="user_123",
        content="Create a Python function to calculate prime numbers",
        task_type="code_generation"
    )
    
    # Process the request
    response = await framework.process_request(request)
    print(f"Response: {response.content}")
    
    # Shutdown
    await framework.shutdown()

if __name__ == "__main__":
    asyncio.run(main())
```

### 2. Using the CLI

Start the AIM server:

```bash
aim-server --host 0.0.0.0 --port 5000
```

Initialize a new project:

```bash
aim-init my-aim-project
cd my-aim-project
pip install -r requirements.txt
python main.py
```

Run benchmarks:

```bash
aim-benchmark --benchmark-type latency --num-requests 100
```

### 3. Creating Custom Agents

```python
from aim import Agent, AgentCapability, Request, Response

class CustomCodeAgent(Agent):
    def __init__(self):
        super().__init__(
            capabilities={AgentCapability.CODE_GENERATION},
            description="Custom code generation agent",
            version="1.0.0"
        )
    
    async def process_request(self, request: Request) -> Response:
        # Your custom logic here
        result = f"Generated code for: {request.content}"
        
        return Response(
            request_id=request.request_id,
            agent_id=self.agent_id,
            content=result,
            confidence=0.9,
            success=True
        )

# Register with framework
framework.register_agent(CustomCodeAgent())
```

### 4. Configuration

```python
from aim import Config

# Load from file
config = Config("config.json")

# Or create programmatically
config = Config({
    "framework": {
        "name": "My AIM Framework",
        "log_level": "INFO"
    },
    "api": {
        "host": "0.0.0.0",
        "port": 5000
    },
    "agents": {
        "max_agents_per_type": 5
    }
})

framework = AIMFramework(config)
```

## Architecture

The AIM Framework consists of five main layers:

1. **Interface Layer**: APIs and user interfaces
2. **Coordination Layer**: Dynamic routing, context weaving, and collaboration
3. **Agent Layer**: Specialized micro-agents for different capabilities
4. **Resource Management Layer**: Adaptive scaling and load balancing
5. **Knowledge Layer**: Learning propagation and Intent Graph

## API Reference

### Core Classes

- `AIMFramework`: Main orchestrator class
- `Agent`: Base class for creating custom agents
- `Request`/`Response`: Communication primitives
- `ContextThread`: Persistent context management
- `Config`: Configuration management

### Agent Capabilities

The framework supports various built-in capabilities:

- `CODE_GENERATION`: Generate code in various languages
- `SECURITY_REVIEW`: Security analysis and vulnerability detection
- `DOCUMENTATION`: Generate and maintain documentation
- `DATA_ANALYSIS`: Analyze and visualize data
- `DESIGN`: UI/UX design and prototyping
- `RESEARCH`: Information gathering and analysis
- `TESTING`: Test generation and execution
- `DEPLOYMENT`: Application deployment and DevOps

## Examples

### Multi-Agent Collaboration

```python
# Request that requires multiple agents
request = Request(
    user_id="user_123",
    content="Create a secure web API with documentation",
    task_type="code_generation"
)

# Framework automatically routes through:
# 1. Code generation agent
# 2. Security review agent  
# 3. Documentation agent

response = await framework.process_request(request)
```

### Context Persistence

```python
# Create a context thread
thread_id = await framework.create_context_thread(
    user_id="user_123",
    initial_context={"project": "web_api", "language": "python"}
)

# First request
request1 = Request(
    user_id="user_123",
    content="Create a Flask API",
    task_type="code_generation",
    context_thread_id=thread_id
)

# Second request (context is maintained)
request2 = Request(
    user_id="user_123", 
    content="Add authentication to the API",
    task_type="code_generation",
    context_thread_id=thread_id  # Same thread
)
```

### Performance Monitoring

```python
# Get performance metrics
metrics = await framework.get_performance_metrics()
print(f"Average latency: {metrics['avg_latency']}")
print(f"Throughput: {metrics['avg_throughput']}")

# Get framework status
status = framework.get_framework_status()
print(f"Active agents: {status['active_agents']}")
```

## Configuration

The framework supports extensive configuration through JSON files or environment variables:

```json
{
  "framework": {
    "name": "AIM Framework",
    "version": "1.0.0",
    "log_level": "INFO"
  },
  "agents": {
    "min_agents_per_type": 1,
    "max_agents_per_type": 5,
    "default_timeout": 30.0
  },
  "context": {
    "max_threads_per_user": 10,
    "default_ttl": 86400.0
  },
  "api": {
    "host": "0.0.0.0",
    "port": 5000,
    "cors_enabled": true
  },
  "performance": {
    "cache_size": 10000,
    "load_balancing_strategy": "predictive"
  }
}
```

Environment variables:
- `AIM_LOG_LEVEL`: Set logging level
- `AIM_API_HOST`: Set API host
- `AIM_API_PORT`: Set API port
- `AIM_CACHE_SIZE`: Set cache size

## Testing

Run the test suite:

```bash
pytest tests/
```

Run with coverage:

```bash
pytest --cov=aim tests/
```

## Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

### Development Setup

1. Clone the repository
2. Install development dependencies: `pip install -e ".[dev]"`
3. Install pre-commit hooks: `pre-commit install`
4. Run tests: `pytest`

## Documentation

Full documentation is available at [https://aim-framework.readthedocs.io/](https://aim-framework.readthedocs.io/)

### Building Documentation Locally

```bash
cd docs/
make html
```

## Performance

The AIM Framework is designed for high performance and scalability:

- **Latency**: Sub-second response times for most requests
- **Throughput**: Handles thousands of concurrent requests
- **Scalability**: Horizontal scaling through agent mesh architecture
- **Memory**: Efficient memory usage with intelligent caching
- **CPU**: Optimized for multi-core systems

## Roadmap

- [ ] Support for more agent types and capabilities
- [ ] Enhanced Intent Graph with machine learning
- [ ] Distributed deployment across multiple nodes
- [ ] Integration with popular AI/ML frameworks
- [ ] Advanced security and authentication features
- [ ] Real-time collaboration features
- [ ] Plugin system for third-party extensions

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Support

- **Documentation**: [https://aim-framework.readthedocs.io/](https://aim-framework.readthedocs.io/)
- **Issues**: [GitHub Issues](https://github.com/jasonviipers/aim-framework/issues)
- **Discussions**: [GitHub Discussions](https://github.com/jasonviipers/aim-framework/discussions)
- **Email**: support@jasonviipers.com

## Citation

If you use the AIM Framework in your research, please cite:

```bibtex
@software{aim_framework,
  title={AIM Framework: Adaptive Intelligence Mesh},
  author={jasonviipers},
  year={2025},
  url={https://github.com/jasonviipers/aim-framework}
}
```

## Acknowledgments

- Thanks to all contributors and the open-source community
- Inspired by distributed systems and multi-agent architectures
- Built with modern Python async/await patterns


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jasonviipers/aim-framework",
    "name": "aim-framework",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "ai artificial-intelligence distributed-systems mesh-network coordination agents",
    "author": "jasonviipers",
    "author_email": "support@jasonviipers.com",
    "download_url": "https://files.pythonhosted.org/packages/b4/56/a624069c569b41d4a7da4762b02653e47776b67022254fc43e9dd1296ca2/aim-framework-1.0.0.tar.gz",
    "platform": null,
    "description": "# AIM Framework: Adaptive Intelligence Mesh\r\n\r\n[![Python Version](https://img.shields.io/badge/python-3.8%2B-blue.svg)](https://python.org)\r\n[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)\r\n[![Documentation](https://img.shields.io/badge/docs-latest-brightgreen.svg)](https://aim-framework.readthedocs.io/)\r\n\r\nA distributed coordination system for AI deployment and interaction that revolutionizes how AI systems collaborate and scale.\r\n\r\n## Overview\r\n\r\nThe AIM Framework creates a mesh network of AI agents that can:\r\n\r\n- **Dynamic Capability Routing**: Route queries to specialized micro-agents based on context, urgency, and required expertise\r\n- **Persistent Context Weaving**: Create \"context threads\" that persist across sessions and can be selectively shared between agents\r\n- **Adaptive Resource Scaling**: Automatically spawn or hibernate agents based on demand patterns\r\n- **Cross-Agent Learning Propagation**: Share knowledge gained by one agent across the mesh without centralized retraining\r\n- **Confidence-Based Collaboration**: Enable agents to detect their uncertainty and automatically collaborate with other agents\r\n\r\nThe core innovation of AIM is the **Intent Graph** - a real-time graph of user intentions, project contexts, and capability needs that allows the system to anticipate requirements and pre-position resources.\r\n\r\n## Key Features\r\n\r\n### \ud83d\udd00 Dynamic Capability Routing\r\nInstead of having one large model handle everything, AIM routes queries to specialized micro-agents based on context, urgency, and required expertise. A coding question might route through a code-specialist agent, then to a security-review agent, then to a documentation agent.\r\n\r\n### \ud83e\uddf5 Persistent Context Weaving\r\nEach interaction creates \"context threads\" that persist across sessions and can be selectively shared between agents. Your conversation about a project continues seamlessly whether you're asking about code, design, or deployment.\r\n\r\n### \ud83d\udcc8 Adaptive Resource Scaling\r\nThe mesh automatically spawns or hibernates agents based on demand patterns. During high coding activity, more programming agents activate. During research phases, more analysis agents come online.\r\n\r\n### \ud83e\udde0 Cross-Agent Learning Propagation\r\nWhen one agent learns something valuable (like a common error pattern), it propagates this knowledge through the mesh without centralized retraining.\r\n\r\n### \ud83e\udd1d Confidence-Based Collaboration\r\nAgents can detect their uncertainty and automatically collaborate with other agents, creating dynamic expert panels for complex problems.\r\n\r\n### \ud83c\udfaf Intent Graph\r\nBuilds a real-time graph of user intentions, project contexts, and capability needs to anticipate requirements and pre-position resources.\r\n\r\n## Installation\r\n\r\n### From PyPI (Recommended)\r\n\r\n```bash\r\npip install aim-framework\r\n```\r\n\r\n### From Source\r\n\r\n```bash\r\ngit clone https://github.com/jasonviipers/aim-framework.git\r\ncd aim-framework\r\npip install -e .\r\n```\r\n\r\n### Development Installation\r\n\r\n```bash\r\ngit clone https://github.com/jasonviipers/aim-framework.git\r\ncd aim-framework\r\npip install -e \".[dev,docs,api,visualization]\"\r\n```\r\n\r\n## Quick Start\r\n\r\n### 1. Basic Usage\r\n\r\n```python\r\nimport asyncio\r\nfrom aim import AIMFramework, Config\r\n\r\nasync def main():\r\n    # Create and initialize framework\r\n    framework = AIMFramework()\r\n    await framework.initialize()\r\n    \r\n    # Create a request\r\n    from aim import Request\r\n    request = Request(\r\n        user_id=\"user_123\",\r\n        content=\"Create a Python function to calculate prime numbers\",\r\n        task_type=\"code_generation\"\r\n    )\r\n    \r\n    # Process the request\r\n    response = await framework.process_request(request)\r\n    print(f\"Response: {response.content}\")\r\n    \r\n    # Shutdown\r\n    await framework.shutdown()\r\n\r\nif __name__ == \"__main__\":\r\n    asyncio.run(main())\r\n```\r\n\r\n### 2. Using the CLI\r\n\r\nStart the AIM server:\r\n\r\n```bash\r\naim-server --host 0.0.0.0 --port 5000\r\n```\r\n\r\nInitialize a new project:\r\n\r\n```bash\r\naim-init my-aim-project\r\ncd my-aim-project\r\npip install -r requirements.txt\r\npython main.py\r\n```\r\n\r\nRun benchmarks:\r\n\r\n```bash\r\naim-benchmark --benchmark-type latency --num-requests 100\r\n```\r\n\r\n### 3. Creating Custom Agents\r\n\r\n```python\r\nfrom aim import Agent, AgentCapability, Request, Response\r\n\r\nclass CustomCodeAgent(Agent):\r\n    def __init__(self):\r\n        super().__init__(\r\n            capabilities={AgentCapability.CODE_GENERATION},\r\n            description=\"Custom code generation agent\",\r\n            version=\"1.0.0\"\r\n        )\r\n    \r\n    async def process_request(self, request: Request) -> Response:\r\n        # Your custom logic here\r\n        result = f\"Generated code for: {request.content}\"\r\n        \r\n        return Response(\r\n            request_id=request.request_id,\r\n            agent_id=self.agent_id,\r\n            content=result,\r\n            confidence=0.9,\r\n            success=True\r\n        )\r\n\r\n# Register with framework\r\nframework.register_agent(CustomCodeAgent())\r\n```\r\n\r\n### 4. Configuration\r\n\r\n```python\r\nfrom aim import Config\r\n\r\n# Load from file\r\nconfig = Config(\"config.json\")\r\n\r\n# Or create programmatically\r\nconfig = Config({\r\n    \"framework\": {\r\n        \"name\": \"My AIM Framework\",\r\n        \"log_level\": \"INFO\"\r\n    },\r\n    \"api\": {\r\n        \"host\": \"0.0.0.0\",\r\n        \"port\": 5000\r\n    },\r\n    \"agents\": {\r\n        \"max_agents_per_type\": 5\r\n    }\r\n})\r\n\r\nframework = AIMFramework(config)\r\n```\r\n\r\n## Architecture\r\n\r\nThe AIM Framework consists of five main layers:\r\n\r\n1. **Interface Layer**: APIs and user interfaces\r\n2. **Coordination Layer**: Dynamic routing, context weaving, and collaboration\r\n3. **Agent Layer**: Specialized micro-agents for different capabilities\r\n4. **Resource Management Layer**: Adaptive scaling and load balancing\r\n5. **Knowledge Layer**: Learning propagation and Intent Graph\r\n\r\n## API Reference\r\n\r\n### Core Classes\r\n\r\n- `AIMFramework`: Main orchestrator class\r\n- `Agent`: Base class for creating custom agents\r\n- `Request`/`Response`: Communication primitives\r\n- `ContextThread`: Persistent context management\r\n- `Config`: Configuration management\r\n\r\n### Agent Capabilities\r\n\r\nThe framework supports various built-in capabilities:\r\n\r\n- `CODE_GENERATION`: Generate code in various languages\r\n- `SECURITY_REVIEW`: Security analysis and vulnerability detection\r\n- `DOCUMENTATION`: Generate and maintain documentation\r\n- `DATA_ANALYSIS`: Analyze and visualize data\r\n- `DESIGN`: UI/UX design and prototyping\r\n- `RESEARCH`: Information gathering and analysis\r\n- `TESTING`: Test generation and execution\r\n- `DEPLOYMENT`: Application deployment and DevOps\r\n\r\n## Examples\r\n\r\n### Multi-Agent Collaboration\r\n\r\n```python\r\n# Request that requires multiple agents\r\nrequest = Request(\r\n    user_id=\"user_123\",\r\n    content=\"Create a secure web API with documentation\",\r\n    task_type=\"code_generation\"\r\n)\r\n\r\n# Framework automatically routes through:\r\n# 1. Code generation agent\r\n# 2. Security review agent  \r\n# 3. Documentation agent\r\n\r\nresponse = await framework.process_request(request)\r\n```\r\n\r\n### Context Persistence\r\n\r\n```python\r\n# Create a context thread\r\nthread_id = await framework.create_context_thread(\r\n    user_id=\"user_123\",\r\n    initial_context={\"project\": \"web_api\", \"language\": \"python\"}\r\n)\r\n\r\n# First request\r\nrequest1 = Request(\r\n    user_id=\"user_123\",\r\n    content=\"Create a Flask API\",\r\n    task_type=\"code_generation\",\r\n    context_thread_id=thread_id\r\n)\r\n\r\n# Second request (context is maintained)\r\nrequest2 = Request(\r\n    user_id=\"user_123\", \r\n    content=\"Add authentication to the API\",\r\n    task_type=\"code_generation\",\r\n    context_thread_id=thread_id  # Same thread\r\n)\r\n```\r\n\r\n### Performance Monitoring\r\n\r\n```python\r\n# Get performance metrics\r\nmetrics = await framework.get_performance_metrics()\r\nprint(f\"Average latency: {metrics['avg_latency']}\")\r\nprint(f\"Throughput: {metrics['avg_throughput']}\")\r\n\r\n# Get framework status\r\nstatus = framework.get_framework_status()\r\nprint(f\"Active agents: {status['active_agents']}\")\r\n```\r\n\r\n## Configuration\r\n\r\nThe framework supports extensive configuration through JSON files or environment variables:\r\n\r\n```json\r\n{\r\n  \"framework\": {\r\n    \"name\": \"AIM Framework\",\r\n    \"version\": \"1.0.0\",\r\n    \"log_level\": \"INFO\"\r\n  },\r\n  \"agents\": {\r\n    \"min_agents_per_type\": 1,\r\n    \"max_agents_per_type\": 5,\r\n    \"default_timeout\": 30.0\r\n  },\r\n  \"context\": {\r\n    \"max_threads_per_user\": 10,\r\n    \"default_ttl\": 86400.0\r\n  },\r\n  \"api\": {\r\n    \"host\": \"0.0.0.0\",\r\n    \"port\": 5000,\r\n    \"cors_enabled\": true\r\n  },\r\n  \"performance\": {\r\n    \"cache_size\": 10000,\r\n    \"load_balancing_strategy\": \"predictive\"\r\n  }\r\n}\r\n```\r\n\r\nEnvironment variables:\r\n- `AIM_LOG_LEVEL`: Set logging level\r\n- `AIM_API_HOST`: Set API host\r\n- `AIM_API_PORT`: Set API port\r\n- `AIM_CACHE_SIZE`: Set cache size\r\n\r\n## Testing\r\n\r\nRun the test suite:\r\n\r\n```bash\r\npytest tests/\r\n```\r\n\r\nRun with coverage:\r\n\r\n```bash\r\npytest --cov=aim tests/\r\n```\r\n\r\n## Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\r\n\r\n### Development Setup\r\n\r\n1. Clone the repository\r\n2. Install development dependencies: `pip install -e \".[dev]\"`\r\n3. Install pre-commit hooks: `pre-commit install`\r\n4. Run tests: `pytest`\r\n\r\n## Documentation\r\n\r\nFull documentation is available at [https://aim-framework.readthedocs.io/](https://aim-framework.readthedocs.io/)\r\n\r\n### Building Documentation Locally\r\n\r\n```bash\r\ncd docs/\r\nmake html\r\n```\r\n\r\n## Performance\r\n\r\nThe AIM Framework is designed for high performance and scalability:\r\n\r\n- **Latency**: Sub-second response times for most requests\r\n- **Throughput**: Handles thousands of concurrent requests\r\n- **Scalability**: Horizontal scaling through agent mesh architecture\r\n- **Memory**: Efficient memory usage with intelligent caching\r\n- **CPU**: Optimized for multi-core systems\r\n\r\n## Roadmap\r\n\r\n- [ ] Support for more agent types and capabilities\r\n- [ ] Enhanced Intent Graph with machine learning\r\n- [ ] Distributed deployment across multiple nodes\r\n- [ ] Integration with popular AI/ML frameworks\r\n- [ ] Advanced security and authentication features\r\n- [ ] Real-time collaboration features\r\n- [ ] Plugin system for third-party extensions\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## Support\r\n\r\n- **Documentation**: [https://aim-framework.readthedocs.io/](https://aim-framework.readthedocs.io/)\r\n- **Issues**: [GitHub Issues](https://github.com/jasonviipers/aim-framework/issues)\r\n- **Discussions**: [GitHub Discussions](https://github.com/jasonviipers/aim-framework/discussions)\r\n- **Email**: support@jasonviipers.com\r\n\r\n## Citation\r\n\r\nIf you use the AIM Framework in your research, please cite:\r\n\r\n```bibtex\r\n@software{aim_framework,\r\n  title={AIM Framework: Adaptive Intelligence Mesh},\r\n  author={jasonviipers},\r\n  year={2025},\r\n  url={https://github.com/jasonviipers/aim-framework}\r\n}\r\n```\r\n\r\n## Acknowledgments\r\n\r\n- Thanks to all contributors and the open-source community\r\n- Inspired by distributed systems and multi-agent architectures\r\n- Built with modern Python async/await patterns\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Adaptive Intelligence Mesh - A distributed coordination system for AI deployment and interaction",
    "version": "1.0.0",
    "project_urls": {
        "Bug Reports": "https://github.com/jasonviipers/aim-framework/issues",
        "Documentation": "https://aim-framework.readthedocs.io/",
        "Homepage": "https://github.com/jasonviipers/aim-framework",
        "Source": "https://github.com/jasonviipers/aim-framework"
    },
    "split_keywords": [
        "ai",
        "artificial-intelligence",
        "distributed-systems",
        "mesh-network",
        "coordination",
        "agents"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d6c824d44c39654853caf0f6fa2dedf7fbb8c0d4a0270e288edc81ef7d861252",
                "md5": "3885c6438ae6a27d3a964d6e7c69439a",
                "sha256": "c406132636fdf638d840d1ac62aaee92040f2099227a6ff5eb98a9f5df481299"
            },
            "downloads": -1,
            "filename": "aim_framework-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3885c6438ae6a27d3a964d6e7c69439a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 56116,
            "upload_time": "2025-07-30T00:34:36",
            "upload_time_iso_8601": "2025-07-30T00:34:36.856899Z",
            "url": "https://files.pythonhosted.org/packages/d6/c8/24d44c39654853caf0f6fa2dedf7fbb8c0d4a0270e288edc81ef7d861252/aim_framework-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b456a624069c569b41d4a7da4762b02653e47776b67022254fc43e9dd1296ca2",
                "md5": "6171fea66962cf2ea7aa789d40fd4bb4",
                "sha256": "d9033083dcccd4528a154953996be9cd54568a1a116effac414e2dbf86fbb125"
            },
            "downloads": -1,
            "filename": "aim-framework-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6171fea66962cf2ea7aa789d40fd4bb4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 50342,
            "upload_time": "2025-07-30T00:34:38",
            "upload_time_iso_8601": "2025-07-30T00:34:38.328963Z",
            "url": "https://files.pythonhosted.org/packages/b4/56/a624069c569b41d4a7da4762b02653e47776b67022254fc43e9dd1296ca2/aim-framework-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-30 00:34:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jasonviipers",
    "github_project": "aim-framework",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "asyncio-mqtt",
            "specs": [
                [
                    ">=",
                    "0.11.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.28.0"
                ]
            ]
        },
        {
            "name": "aiohttp",
            "specs": [
                [
                    ">=",
                    "3.8.0"
                ]
            ]
        },
        {
            "name": "websockets",
            "specs": [
                [
                    ">=",
                    "10.0"
                ]
            ]
        },
        {
            "name": "flask",
            "specs": [
                [
                    ">=",
                    "2.2.0"
                ]
            ]
        },
        {
            "name": "flask-cors",
            "specs": [
                [
                    ">=",
                    "4.0.0"
                ]
            ]
        },
        {
            "name": "gunicorn",
            "specs": [
                [
                    ">=",
                    "20.1.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.5.0"
                ]
            ]
        },
        {
            "name": "plotly",
            "specs": [
                [
                    ">=",
                    "5.10.0"
                ]
            ]
        },
        {
            "name": "networkx",
            "specs": [
                [
                    ">=",
                    "2.8.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.1.0"
                ]
            ]
        },
        {
            "name": "pyyaml",
            "specs": [
                [
                    ">=",
                    "6.0"
                ]
            ]
        },
        {
            "name": "python-dotenv",
            "specs": [
                [
                    ">=",
                    "0.19.0"
                ]
            ]
        },
        {
            "name": "click",
            "specs": [
                [
                    ">=",
                    "8.0.0"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    ">=",
                    "7.0.0"
                ]
            ]
        },
        {
            "name": "pytest-cov",
            "specs": [
                [
                    ">=",
                    "4.0.0"
                ]
            ]
        },
        {
            "name": "pytest-asyncio",
            "specs": [
                [
                    ">=",
                    "0.20.0"
                ]
            ]
        },
        {
            "name": "black",
            "specs": [
                [
                    ">=",
                    "22.0.0"
                ]
            ]
        },
        {
            "name": "flake8",
            "specs": [
                [
                    ">=",
                    "5.0.0"
                ]
            ]
        },
        {
            "name": "mypy",
            "specs": [
                [
                    ">=",
                    "0.991"
                ]
            ]
        },
        {
            "name": "pre-commit",
            "specs": [
                [
                    ">=",
                    "2.20.0"
                ]
            ]
        },
        {
            "name": "sphinx",
            "specs": [
                [
                    ">=",
                    "5.0.0"
                ]
            ]
        },
        {
            "name": "sphinx-rtd-theme",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "myst-parser",
            "specs": [
                [
                    ">=",
                    "0.18.0"
                ]
            ]
        },
        {
            "name": "psutil",
            "specs": [
                [
                    ">=",
                    "5.9.0"
                ]
            ]
        },
        {
            "name": "memory-profiler",
            "specs": [
                [
                    ">=",
                    "0.60.0"
                ]
            ]
        }
    ],
    "lcname": "aim-framework"
}
        
Elapsed time: 0.57599s