bnpm


Namebnpm JSON
Version 0.5.3 PyPI version JSON
download
home_pagehttps://github.com/RichieHakim/basic_neural_processing_modules
SummaryA library of useful modules for data analysis.
upload_time2024-04-25 04:48:14
maintainerNone
docs_urlNone
authorRichard Hakim
requires_pythonNone
licenseLICENSE
keywords data analysis machine learning neuroscience
VCS
bugtrack_url
requirements h5py eva_decord ipywidgets kornia matplotlib natsort numba numpy opencv_contrib_python opt_einsum optuna optuna_integration pandas paramiko psutil PyYAML pytest hypothesis scikit_learn tqdm seaborn sparse scipy sqlalchemy pymysql xxhash wandb torch torchvision torchaudio tables pulp spconv torch_sparse av pynwb sendgrid pycuda cuml cupy cudf scanimage_tiff_reader jupyter PyWavelets mat73 psycopg2
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version](https://badge.fury.io/py/bnpm.svg)](https://badge.fury.io/py/bnpm)
[![Downloads](https://pepy.tech/badge/bnpm)](https://pepy.tech/project/bnpm)
[![repo size](https://img.shields.io/github/repo-size/RichieHakim/basic_neural_processing_modules)](https://github.com/RichieHakim/basic_neural_processing_modules/)

#  basic_neural_processing_modules 
Personal library of functions used in analyzing neural data.
If you find a bug or just want to reach out: RichHakim@gmail.com

## Installation 
Normal installation of `bnpm` does not install all possible dependencies; there are some specific functions that wrap libraries that may need to be installed separately on a case-by-case basis.

Install stable version:
```
pip install bnpm[core]
```

If installing on a server or any computer without graphics/display, install using `core_cv2Headless`. If you accidentally installed the normal version, simply please uninstall `pip uninstall opencv-contrib-python` and install `pip install opencv-contrib-python-headless` instead. 


Install development version:
```
pip install git+https://github.com/RichieHakim/basic_neural_processing_modules.git
```

import with:
```
import bnpm
```


## Usage 
My favorites:
- **`automatic_regression`** module
    - Allows for easy and fast hyperparameter optimization of regression models
    - Any model with a `fit` and `predict` method can be used (e.g. `sklearn` and similar)
    - Uses `optuna` for hyperparameter optimization

Other useful functions:
- Signal Processing:
    - `timeSeries.rolling_percentile_rq_multicore`
        - Fast rolling percentile calculation
    -  `timeSeries.event_triggered_traces`
        - Fast creation of a matrix of aligned traces relative to specified event times

- Machine Learning:
    - `neural_networks` module
        - Has nice RNN regression and classification classes
    - `decomposition.torch_PCA`
        - Fast standard PCA using PyTorch
    - `similarity.orthogonalize`
        - Orthogonalize a matrix relative to a set of vectors using OLS or Gram-Schmidt process

- Miscellaneous
    - `path_helpers.find_paths`
        - Find paths to files and/or folders in a directory. Searches recursively using regex.
    - `image_processing.play_video_cv2`
        - Plays and/or saves a 3D array as a video using OpenCV
    - `h5_handling.simple_save` and `h5_handling.simple_load`
        - Simple lazy loading and saving of dictionaries as nested h5 files

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/RichieHakim/basic_neural_processing_modules",
    "name": "bnpm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "data analysis, machine learning, neuroscience",
    "author": "Richard Hakim",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/6a/a7/f524a2cf30adae4d968c47966d55f1a989bc9752f1b5298a0812315ae5e4/bnpm-0.5.3.tar.gz",
    "platform": null,
    "description": "[![PyPI version](https://badge.fury.io/py/bnpm.svg)](https://badge.fury.io/py/bnpm)\n[![Downloads](https://pepy.tech/badge/bnpm)](https://pepy.tech/project/bnpm)\n[![repo size](https://img.shields.io/github/repo-size/RichieHakim/basic_neural_processing_modules)](https://github.com/RichieHakim/basic_neural_processing_modules/)\n\n#  basic_neural_processing_modules \nPersonal library of functions used in analyzing neural data.\nIf you find a bug or just want to reach out: RichHakim@gmail.com\n\n## Installation \nNormal installation of `bnpm` does not install all possible dependencies; there are some specific functions that wrap libraries that may need to be installed separately on a case-by-case basis.\n\nInstall stable version:\n```\npip install bnpm[core]\n```\n\nIf installing on a server or any computer without graphics/display, install using `core_cv2Headless`. If you accidentally installed the normal version, simply please uninstall `pip uninstall opencv-contrib-python` and install `pip install opencv-contrib-python-headless` instead. \n\n\nInstall development version:\n```\npip install git+https://github.com/RichieHakim/basic_neural_processing_modules.git\n```\n\nimport with:\n```\nimport bnpm\n```\n\n\n## Usage \nMy favorites:\n- **`automatic_regression`** module\n    - Allows for easy and fast hyperparameter optimization of regression models\n    - Any model with a `fit` and `predict` method can be used (e.g. `sklearn` and similar)\n    - Uses `optuna` for hyperparameter optimization\n\nOther useful functions:\n- Signal Processing:\n    - `timeSeries.rolling_percentile_rq_multicore`\n        - Fast rolling percentile calculation\n    -  `timeSeries.event_triggered_traces`\n        - Fast creation of a matrix of aligned traces relative to specified event times\n\n- Machine Learning:\n    - `neural_networks` module\n        - Has nice RNN regression and classification classes\n    - `decomposition.torch_PCA`\n        - Fast standard PCA using PyTorch\n    - `similarity.orthogonalize`\n        - Orthogonalize a matrix relative to a set of vectors using OLS or Gram-Schmidt process\n\n- Miscellaneous\n    - `path_helpers.find_paths`\n        - Find paths to files and/or folders in a directory. Searches recursively using regex.\n    - `image_processing.play_video_cv2`\n        - Plays and/or saves a 3D array as a video using OpenCV\n    - `h5_handling.simple_save` and `h5_handling.simple_load`\n        - Simple lazy loading and saving of dictionaries as nested h5 files\n",
    "bugtrack_url": null,
    "license": "LICENSE",
    "summary": "A library of useful modules for data analysis.",
    "version": "0.5.3",
    "project_urls": {
        "Homepage": "https://github.com/RichieHakim/basic_neural_processing_modules"
    },
    "split_keywords": [
        "data analysis",
        " machine learning",
        " neuroscience"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "850c87c6a0c887030f18172480ffb408e7b3d7214e44ab21fb9ddfd5219bd3fc",
                "md5": "b789e6e80b26833f57d8f06d18572dba",
                "sha256": "3684f1264509292c16f1527288dafb4a3141e0b0bd277e4a091bc83f4a6c89b6"
            },
            "downloads": -1,
            "filename": "bnpm-0.5.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b789e6e80b26833f57d8f06d18572dba",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 227022,
            "upload_time": "2024-04-25T04:48:12",
            "upload_time_iso_8601": "2024-04-25T04:48:12.623625Z",
            "url": "https://files.pythonhosted.org/packages/85/0c/87c6a0c887030f18172480ffb408e7b3d7214e44ab21fb9ddfd5219bd3fc/bnpm-0.5.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6aa7f524a2cf30adae4d968c47966d55f1a989bc9752f1b5298a0812315ae5e4",
                "md5": "7590d9a716c6c560b5e80095067649a6",
                "sha256": "5c70eb648c8a9b217dcb80e50b6dcdd57c82e96bf0eaa27e202454e04b78fa5c"
            },
            "downloads": -1,
            "filename": "bnpm-0.5.3.tar.gz",
            "has_sig": false,
            "md5_digest": "7590d9a716c6c560b5e80095067649a6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 215299,
            "upload_time": "2024-04-25T04:48:14",
            "upload_time_iso_8601": "2024-04-25T04:48:14.778564Z",
            "url": "https://files.pythonhosted.org/packages/6a/a7/f524a2cf30adae4d968c47966d55f1a989bc9752f1b5298a0812315ae5e4/bnpm-0.5.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-25 04:48:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "RichieHakim",
    "github_project": "basic_neural_processing_modules",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "h5py",
            "specs": []
        },
        {
            "name": "eva_decord",
            "specs": []
        },
        {
            "name": "ipywidgets",
            "specs": []
        },
        {
            "name": "kornia",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "natsort",
            "specs": []
        },
        {
            "name": "numba",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "opencv_contrib_python",
            "specs": []
        },
        {
            "name": "opt_einsum",
            "specs": []
        },
        {
            "name": "optuna",
            "specs": []
        },
        {
            "name": "optuna_integration",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "paramiko",
            "specs": []
        },
        {
            "name": "psutil",
            "specs": []
        },
        {
            "name": "PyYAML",
            "specs": []
        },
        {
            "name": "pytest",
            "specs": []
        },
        {
            "name": "hypothesis",
            "specs": []
        },
        {
            "name": "scikit_learn",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "seaborn",
            "specs": []
        },
        {
            "name": "sparse",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "sqlalchemy",
            "specs": []
        },
        {
            "name": "pymysql",
            "specs": []
        },
        {
            "name": "xxhash",
            "specs": []
        },
        {
            "name": "wandb",
            "specs": []
        },
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "torchvision",
            "specs": []
        },
        {
            "name": "torchaudio",
            "specs": []
        },
        {
            "name": "tables",
            "specs": []
        },
        {
            "name": "pulp",
            "specs": []
        },
        {
            "name": "spconv",
            "specs": []
        },
        {
            "name": "torch_sparse",
            "specs": []
        },
        {
            "name": "av",
            "specs": []
        },
        {
            "name": "pynwb",
            "specs": []
        },
        {
            "name": "sendgrid",
            "specs": []
        },
        {
            "name": "pycuda",
            "specs": []
        },
        {
            "name": "cuml",
            "specs": []
        },
        {
            "name": "cupy",
            "specs": []
        },
        {
            "name": "cudf",
            "specs": []
        },
        {
            "name": "scanimage_tiff_reader",
            "specs": []
        },
        {
            "name": "jupyter",
            "specs": []
        },
        {
            "name": "PyWavelets",
            "specs": []
        },
        {
            "name": "mat73",
            "specs": []
        },
        {
            "name": "psycopg2",
            "specs": []
        }
    ],
    "lcname": "bnpm"
}
        
Elapsed time: 0.26077s