clumps-ptm


Nameclumps-ptm JSON
Version 0.0.6 PyPI version JSON
download
home_pagehttps://github.com/getzlab/CLUMPS-PTM
SummaryCLUMPS-PTM driver gene discovery using 3D protein structure (Getz Lab).
upload_time2023-04-17 14:32:11
maintainer
docs_urlNone
authorShankara Anand
requires_python>=3.6
license
keywords cancer bioinformatics genomics proteomics proteins alphafold post-translational modifications phosphorylation acetylation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # CLUMPS-PTM

An algorithm for identifying 3D clusters ("clumps") of post-translational modifications (PTMs). Developed for the Clinical Proteomic Tumor Atlas Consortium ([CPTAC](https://proteomics.cancer.gov/programs/cptac)). Full project repoistory for pan-cancer project can be found [here](https://github.com/getzlab/CPTAC_PanCan_2021).

__Author__: Shankara Anand

__Email__: sanand@broadinstitute.org

_Requires Python 3.6.0 or higher._

## Installation

##### PIP

`pip3 install clumps-ptm`

or

##### Git Clone

```
git clone git@github.com:getzlab/CLUMPS-PTM.git
cd CLUMPS-PTM
pip3 install -e .
```

## Use

CLUMPS-PTM has 3 general phases of analysis:
1. __Mapping__: taking input PTM proteomic data and mapping them onto PDB structural data.

  Mapping relies on the source data and involves programmatic calling of `blastp+` depending on the source data-base to map to UNIPROT and ultimately PDB structures. An example notebook that walks through the mapping and demonstrates use of `clumps-ptm` API for running these steps programmatically can be found [here](https://github.com/getzlab/CLUMPS-PTM/blob/main/examples/CPTAC_Mapping_Workflow.ipynb). Once the mapping is performed once for a new data-set, the mapping file is used as the `--maps` flag in `clumpsptm` command (below).

2. __CLUMPS__: running the algorithm for identifying statistically significant clustering of PTM sites.

  CLUMPS-PTM was designed for use with differential expression proteomic data. Due to the nature of drop-out in Mass-Spectrometry data, we opt for using broad changes in PTM levels across sample groups to interrogate "clumping" of modifications. Thus, the input requires out-put from Limma-Voom differential expression.

```{python}
usage: clumpsptm [-h] -i INPUT -m MAPS -w WEIGHT -s PDBSTORE [-o OUTPUT_DIR]
                 [-x XPO] [--threads THREADS] [-v]
                 [-f [FEATURES [FEATURES ...]]] [-g GROUPING] [-q]
                 [--min_sites MIN_SITES] [--subset {positive,negative}]
                 [--protein_id PROTEIN_ID] [--site_id SITE_ID] [--alphafold]
                 [--alphafold_threshold ALPHAFOLD_THRESHOLD]

Run CLUMPS-PTM.

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        <Required> Input file.
  -m MAPS, --maps MAPS  <Required> Mapping with index as indices that overlap
                        input.
  -w WEIGHT, --weight WEIGHT
                        <Required> Weighting for CLUMPS-PTM (ex. logFC).
  -s PDBSTORE, --pdbstore PDBSTORE
                        <Required> path to PDBStore directory.
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        Output directory.
  -x XPO, --xpo XPO     Soft threshold parameter for truncated Gaussian.
  --threads THREADS     Number of threads for sampling.
  -v, --verbose         Verbosity.
  -f [FEATURES [FEATURES ...]], --features [FEATURES [FEATURES ...]]
                        Assays to subset for.
  -g GROUPING, --grouping GROUPING
                        DE group to use.
  -q, --use_only_significant_sites
                        Only use significant sites for CLUMPS-PTM.
  --min_sites MIN_SITES
                        Minimum number of sites.
  --subset {positive,negative}
                        Subset sites.
  --protein_id PROTEIN_ID
                        Unique protein id in input.
  --site_id SITE_ID     Unique site id in input.
  --alphafold           Run using alphafold structures.
  --alphafold_threshold ALPHAFOLD_THRESHOLD
                        Threshold confidence level for alphafold sites.

```

3. __Post-Processing__: post-processing (FDR correction) \& visualization in Pymol.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/getzlab/CLUMPS-PTM",
    "name": "clumps-ptm",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "cancer,bioinformatics,genomics,proteomics,proteins,alphafold,post-translational modifications,phosphorylation,acetylation",
    "author": "Shankara Anand",
    "author_email": "sanand@broadinstitute.org",
    "download_url": "https://files.pythonhosted.org/packages/53/08/c575be8645b0d0cc3ad0fa1a803830c0fb3a95057e0e8c7ee517f9c1658b/clumps-ptm-0.0.6.tar.gz",
    "platform": null,
    "description": "# CLUMPS-PTM\n\nAn algorithm for identifying 3D clusters (\"clumps\") of post-translational modifications (PTMs). Developed for the Clinical Proteomic Tumor Atlas Consortium ([CPTAC](https://proteomics.cancer.gov/programs/cptac)). Full project repoistory for pan-cancer project can be found [here](https://github.com/getzlab/CPTAC_PanCan_2021).\n\n__Author__: Shankara Anand\n\n__Email__: sanand@broadinstitute.org\n\n_Requires Python 3.6.0 or higher._\n\n## Installation\n\n##### PIP\n\n`pip3 install clumps-ptm`\n\nor\n\n##### Git Clone\n\n```\ngit clone git@github.com:getzlab/CLUMPS-PTM.git\ncd CLUMPS-PTM\npip3 install -e .\n```\n\n## Use\n\nCLUMPS-PTM has 3 general phases of analysis:\n1. __Mapping__: taking input PTM proteomic data and mapping them onto PDB structural data.\n\n  Mapping relies on the source data and involves programmatic calling of `blastp+` depending on the source data-base to map to UNIPROT and ultimately PDB structures. An example notebook that walks through the mapping and demonstrates use of `clumps-ptm` API for running these steps programmatically can be found [here](https://github.com/getzlab/CLUMPS-PTM/blob/main/examples/CPTAC_Mapping_Workflow.ipynb). Once the mapping is performed once for a new data-set, the mapping file is used as the `--maps` flag in `clumpsptm` command (below).\n\n2. __CLUMPS__: running the algorithm for identifying statistically significant clustering of PTM sites.\n\n  CLUMPS-PTM was designed for use with differential expression proteomic data. Due to the nature of drop-out in Mass-Spectrometry data, we opt for using broad changes in PTM levels across sample groups to interrogate \"clumping\" of modifications. Thus, the input requires out-put from Limma-Voom differential expression.\n\n```{python}\nusage: clumpsptm [-h] -i INPUT -m MAPS -w WEIGHT -s PDBSTORE [-o OUTPUT_DIR]\n                 [-x XPO] [--threads THREADS] [-v]\n                 [-f [FEATURES [FEATURES ...]]] [-g GROUPING] [-q]\n                 [--min_sites MIN_SITES] [--subset {positive,negative}]\n                 [--protein_id PROTEIN_ID] [--site_id SITE_ID] [--alphafold]\n                 [--alphafold_threshold ALPHAFOLD_THRESHOLD]\n\nRun CLUMPS-PTM.\n\noptional arguments:\n  -h, --help            show this help message and exit\n  -i INPUT, --input INPUT\n                        <Required> Input file.\n  -m MAPS, --maps MAPS  <Required> Mapping with index as indices that overlap\n                        input.\n  -w WEIGHT, --weight WEIGHT\n                        <Required> Weighting for CLUMPS-PTM (ex. logFC).\n  -s PDBSTORE, --pdbstore PDBSTORE\n                        <Required> path to PDBStore directory.\n  -o OUTPUT_DIR, --output_dir OUTPUT_DIR\n                        Output directory.\n  -x XPO, --xpo XPO     Soft threshold parameter for truncated Gaussian.\n  --threads THREADS     Number of threads for sampling.\n  -v, --verbose         Verbosity.\n  -f [FEATURES [FEATURES ...]], --features [FEATURES [FEATURES ...]]\n                        Assays to subset for.\n  -g GROUPING, --grouping GROUPING\n                        DE group to use.\n  -q, --use_only_significant_sites\n                        Only use significant sites for CLUMPS-PTM.\n  --min_sites MIN_SITES\n                        Minimum number of sites.\n  --subset {positive,negative}\n                        Subset sites.\n  --protein_id PROTEIN_ID\n                        Unique protein id in input.\n  --site_id SITE_ID     Unique site id in input.\n  --alphafold           Run using alphafold structures.\n  --alphafold_threshold ALPHAFOLD_THRESHOLD\n                        Threshold confidence level for alphafold sites.\n\n```\n\n3. __Post-Processing__: post-processing (FDR correction) \\& visualization in Pymol.\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "CLUMPS-PTM driver gene discovery using 3D protein structure (Getz Lab).",
    "version": "0.0.6",
    "split_keywords": [
        "cancer",
        "bioinformatics",
        "genomics",
        "proteomics",
        "proteins",
        "alphafold",
        "post-translational modifications",
        "phosphorylation",
        "acetylation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "82b263d7c145bc31c1d5c3c13fcb648479118164aa3d546fe5f5e62a6c5e55ae",
                "md5": "90dee5c263c28e3369b5d4f5a90bec1a",
                "sha256": "96934b32fe4391c5250fd8baf5470d67ebd1ad5662dd44603f6252b9f9507f1d"
            },
            "downloads": -1,
            "filename": "clumps_ptm-0.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "90dee5c263c28e3369b5d4f5a90bec1a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 25480,
            "upload_time": "2023-04-17T14:32:09",
            "upload_time_iso_8601": "2023-04-17T14:32:09.495652Z",
            "url": "https://files.pythonhosted.org/packages/82/b2/63d7c145bc31c1d5c3c13fcb648479118164aa3d546fe5f5e62a6c5e55ae/clumps_ptm-0.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5308c575be8645b0d0cc3ad0fa1a803830c0fb3a95057e0e8c7ee517f9c1658b",
                "md5": "087e11fb25f17e51a38c911f08babd92",
                "sha256": "6a36b5599fa2702cd7bf48541ce842ee24c8ac27329590ef6acbeea748b09faf"
            },
            "downloads": -1,
            "filename": "clumps-ptm-0.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "087e11fb25f17e51a38c911f08babd92",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 581948,
            "upload_time": "2023-04-17T14:32:11",
            "upload_time_iso_8601": "2023-04-17T14:32:11.991958Z",
            "url": "https://files.pythonhosted.org/packages/53/08/c575be8645b0d0cc3ad0fa1a803830c0fb3a95057e0e8c7ee517f9c1658b/clumps-ptm-0.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-17 14:32:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "getzlab",
    "github_project": "CLUMPS-PTM",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "clumps-ptm"
}
        
Elapsed time: 0.06557s