epiaster


Nameepiaster JSON
Version 0.0.7 PyPI version JSON
download
home_pagehttps://github.com/BioX-NKU/ASTER
SummaryASTER: accurate estimation of cell-type numbers in single-cell chromatin accessibility data
upload_time2022-12-02 06:18:15
maintainer
docs_urlNone
authorBioX-NKU
requires_python>=3.8.13
licenseMIT Licence
keywords pip aster single-cell
VCS
bugtrack_url
requirements numpy scipy scikit-learn kneed scanpy episcanpy igraph louvain leidenalg tqdm
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ASTER provides an accurate and efficient way to estimate the number of cell types in single-cell chromatin accessibility data. We provide documentation in the form of functional application programming interface documentation, tutorials and example workflows at https://aster.readthedocs.io/en/latest/index.html. All ASTER wheels distributed on PyPI are MIT licensed.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/BioX-NKU/ASTER",
    "name": "epiaster",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8.13",
    "maintainer_email": "",
    "keywords": "pip,aster,single-cell",
    "author": "BioX-NKU",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/fc/a7/6fba64fc4eae60eea8aa8269edf069910889773571f18bdfca29a3665cb2/epiaster-0.0.7.tar.gz",
    "platform": null,
    "description": "ASTER provides an accurate and efficient way to estimate the number of cell types in single-cell chromatin accessibility data. We provide documentation in the form of functional application programming interface documentation, tutorials and example workflows at https://aster.readthedocs.io/en/latest/index.html. All ASTER wheels distributed on PyPI are MIT licensed.\n",
    "bugtrack_url": null,
    "license": "MIT Licence",
    "summary": "ASTER: accurate estimation of cell-type numbers in single-cell chromatin accessibility data",
    "version": "0.0.7",
    "split_keywords": [
        "pip",
        "aster",
        "single-cell"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "128d00082ef7fd4bf57d0b9bd8001b2e",
                "sha256": "0a8c4567036ed1e6feca1dc22daa4533e120a22bccbc63a9219efc0eef8b85f6"
            },
            "downloads": -1,
            "filename": "epiaster-0.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "128d00082ef7fd4bf57d0b9bd8001b2e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8.13",
            "size": 378860,
            "upload_time": "2022-12-02T06:18:15",
            "upload_time_iso_8601": "2022-12-02T06:18:15.348960Z",
            "url": "https://files.pythonhosted.org/packages/fc/a7/6fba64fc4eae60eea8aa8269edf069910889773571f18bdfca29a3665cb2/epiaster-0.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-02 06:18:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "BioX-NKU",
    "github_project": "ASTER",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "<",
                    "1.22"
                ],
                [
                    ">=",
                    "1.21.6"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.8.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.1.0"
                ]
            ]
        },
        {
            "name": "kneed",
            "specs": [
                [
                    ">=",
                    "0.7.0"
                ]
            ]
        },
        {
            "name": "scanpy",
            "specs": [
                [
                    ">=",
                    "1.9.1"
                ]
            ]
        },
        {
            "name": "episcanpy",
            "specs": [
                [
                    "==",
                    "0.3.2"
                ]
            ]
        },
        {
            "name": "igraph",
            "specs": [
                [
                    ">=",
                    "0.9.10"
                ]
            ]
        },
        {
            "name": "louvain",
            "specs": [
                [
                    ">=",
                    "0.7.1"
                ]
            ]
        },
        {
            "name": "leidenalg",
            "specs": [
                [
                    ">=",
                    "0.8.10"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": []
        }
    ],
    "lcname": "epiaster"
}
        
Elapsed time: 0.06589s