Name | ez-mcp-toolbox JSON |
Version |
1.2.0
JSON |
| download |
home_page | None |
Summary | Utilities for creating and debugging MCP tools |
upload_time | 2025-10-21 11:54:38 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
|
keywords |
opik
mcp
model-context-protocol
llm
observability
debugging
|
VCS |
 |
bugtrack_url |
|
requirements |
mcp
pydantic
python-dotenv
httpx
typing-extensions
opik
opik_optimizer
matplotlib
pillow
fastapi
uvicorn
litellm
rich
prompt-toolkit
nest-asyncio
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# EZ MCP Toolbox
*A Comet ML Open Source Project*
This Python toolbox contains four command-line easy to use utilities:
1. `ez-mcp-server` - turns a file of Python functions into a MCP server
2. `ez-mcp-chatbot` - interactively debug MCP servers, with traces logged to [Opik](https://www.comet.com/site/products/opik/)
3. `ez-mcp-eval` - evaluate LLM applications using Opik's evaluation framework
4. `ez-mcp-optimize` - optimize LLM applications using Opik's optimization framework
## Why?
The `ez-mcp-server` allows a quick way to examine tools, signatures, descriptions, latency, and return values. Combined with the chatbot, you can create a fast workflow to interate on your MCP tools.
The `ez-mcp-chatbot` allows a quick method to examine and debug LLM and MCP tool interactions, with observability available through [Opik](https://github.com/comet-ml/opik). Although the [Opik Playground](https://www.comet.com/docs/opik/opik-university/prompt-engineering/prompt-playground) gives you the ability to test your prompts on datasets, do A/B testing, and more, this chatbot gives you a command-line interaction, debugging tools, combined with Opik observability.
The `ez-mcp-eval` and `ez-mcp-optimize` commands provide evaluation and optimization capabilities for your LLM applications, enabling you to measure performance and automatically improve your prompts using Opik's evaluation and optimization frameworks.
## Installation
```
pip install ez-mcp-toolbox --upgrade
```
## Quick start
### Interactive Chat with MCP Tools
```
ez-mcp-chatbot
```
That will start a `ez-mcp-server` (using example tools below) and the `ez-mcp-chatbot` configured to use those tools.
### Evaluate LLM Applications
```
ez-mcp-eval --prompt "Answer the question" --dataset "my-dataset" --metric "Hallucination"
```
This will evaluate your LLM application using Opik's evaluation framework with your dataset and chosen metrics.
You can also limit the evaluation to the first N items of the dataset:
```bash
ez-mcp-eval --prompt "Answer the question" --dataset "large-dataset" --metric "Hallucination" --num 100
```
### Customize the chatbot
You can customize the chatbot's behavior with a custom system prompt:
```bash
# Use a custom system prompt
ez-mcp-chatbot --system-prompt "You are a helpful coding assistant"
# Create a default configuration
ez-mcp-chatbot --init
```
Example dialog:

This interaction of the LLM with the MCP tools will be logged, and available for examination and debugging in Opik:
<img width="800" alt="chatbot interaction as logged to opik" src="https://github.com/user-attachments/assets/3ad0d79a-7f99-4211-aede-5e0cd81d80c3" />
The rest of this file describes these three commands.
## ez-mcp-server
A command-line utility for turning a regular file of Python functions or classes into a full-fledged MCP server.
### Example
Take an existing Python file of functions, such as this file, `my_tools.py`:
```python
# my_tools.py
def add_numbers(a: float, b: float) -> float:
"""
Add two numbers together.
Args:
a: First number to add
b: Second number to add
Returns:
The sum of a and b
"""
return a + b
def greet_user(name: str) -> str:
"""
Greet a user with a welcoming message.
Args:
name: The name of the person to greet
Returns:
A personalized greeting message
"""
return f"Welcome to ez-mcp-server, {name}!"
```
Then run the server with your custom tools:
```bash
ez-mcp-server my_tools.py
```
You can also load tools from installed Python modules:
```bash
ez-mcp-server opik_optimizer.utils.core
```
Or download tools from a URL:
```bash
ez-mcp-server https://example.com/my_tools.py
```
The server will automatically:
- Load all functions from your file or module (no ez_mcp_toolbox imports required)
- Convert them to MCP tools
- Generate JSON schemas from your function signatures
- Use your docstrings as tool descriptions
Note: if you just launch the server, it will wait for stdio input. This is designed
to run from inside a system that will dynamically start the server (see below).
### Command-line Options
```
ez-mcp-server [-h] [--transport {stdio,sse}] [--host HOST] [--port PORT] [--include INCLUDE] [--exclude EXCLUDE] [tools_file]
```
Positional arguments:
* `tools_file` - Path to tools file, module name, URL to download from, or 'none' to disable tools (e.g., 'my_tools.py', 'opik_optimizer.utils.core', 'https://example.com/tools.py', or 'none') (default: DEMO)
Options:
* `-h`, `--help` - show this help message and exit
* `--transport {stdio,sse}` - Transport method to use (default: `stdio`)
* `--host HOST` - Host for SSE transport (default: `localhost`)
* `--port PORT` - Port for SSE transport (default: `8000`)
* `--include INCLUDE` - Python regex pattern to include only matching tool names
* `--exclude EXCLUDE` - Python regex pattern to exclude matching tool names
### Tool Filtering
You can control which tools are loaded using the `--include` and `--exclude` flags with Python regex patterns:
```bash
# Include only tools with "add" or "multiply" in the name
ez-mcp-server my_tools.py --include "add|multiply"
# Exclude tools with "greet" or "time" in the name
ez-mcp-server my_tools.py --exclude "greet|time"
# Use both filters together
ez-mcp-server my_tools.py --include ".*number.*" --exclude ".*square.*"
# Use with default tools
ez-mcp-server --include "add" --exclude "greet"
```
**Filtering Logic:**
- The `--include` filter is applied first, keeping only tools whose names match the regex pattern
- The `--exclude` filter is then applied, removing any tools whose names match the regex pattern
- Both filters can be used together for fine-grained control
- Invalid regex patterns will cause the server to exit with an error message
# Ez MCP Chatbot
A powerful AI chatbot that integrates with Model Context Protocol (MCP) servers and provides observability through Opik tracing. This chatbot can connect to various MCP servers to access specialized tools and capabilities, making it a versatile assistant for different tasks.
## Features
- **MCP Integration**: Connect to multiple Model Context Protocol servers for specialized tool access
- **Opik Observability**: Built-in tracing and observability with Opik integration
- **Interactive Chat Interface**: Rich console interface with command history and auto-completion
- **Python Code Execution**: Execute Python code directly in the chat environment
- **Tool Management**: Discover and use tools from connected MCP servers
- **Configurable**: JSON-based configuration for models and MCP servers
- **Async Support**: Full asynchronous operation for better performance
### MCP Integration
The server implements the full MCP specification:
- **Tool Discovery**: Dynamic tool listing and metadata
- **Tool Execution**: Asynchronous tool calling with proper error handling
- **Protocol Compliance**: Full compatibility with MCP clients
- **Extensibility**: Easy addition of new tools and capabilities
## Example
Create a default configuration file:
```bash
ez-mcp-chatbot --init
```
This creates a `ez-config.json` file with default settings.
Edit `ez-config.json` to specify your model and MCP servers. For example:
```json
{
"model": "openai/gpt-4o-mini",
"model_kwargs": {
"temperature": 0.2
},
"mcp_servers": [
{
"name": "ez-mcp-server",
"description": "Ez MCP server from Python files",
"command": "ez-mcp-server",
"args": ["/path/to/my_tools.py"]
}
]
}
```
Supported model formats:
- `openai/gpt-4o-mini`
- `anthropic/claude-3-sonnet`
- `google/gemini-pro`
- And many more through LiteLLM
### Basic Commands
Inside the `ez-mcp-chatbot`, you can have a normal LLM conversation.
In addition, you have access to the following meta-commands:
- `/clear` - Clear the conversation history
- `/help` - Show available commands
- `/debug on` or `/debug off` to toggle debug output
- `/show tools` - to list all available tools
- `/show tools SERVER` - to list tools for a specific server
- `/run SERVER.TOOL` - to execute a tool
- `! python_code` - to execute Python code (e.g., '! print(2+2)')
- `quit` or `exit` - Exit the chatbot
### Python Code Execution
Execute Python code by prefixing with `!`:
```
! print(self.messages)
! import math
! math.sqrt(16)
```
### Tool Usage
The chatbot automatically discovers and uses tools from connected MCP servers. Simply ask questions that require tool usage, and the chatbot will automatically call the appropriate tools.
## System Prompts
The chatbot uses a system prompt to define its behavior and personality. You can customize this using the `--system-prompt` command line option.
### Default System Prompt
By default, the chatbot uses this system prompt:
```
You are a helpful AI system for answering questions that can be answered
with any of the available tools.
```
### Custom System Prompts
You can override the default system prompt to customize the chatbot's behavior:
```bash
# Make it a coding assistant
ez-mcp-chatbot --system-prompt "You are an expert Python developer who helps with coding tasks."
# Make it a data analyst
ez-mcp-chatbot --system-prompt "You are a data scientist who specializes in analyzing datasets and creating visualizations."
# Make it more conversational
ez-mcp-chatbot --system-prompt "You are a friendly AI assistant who loves to help users with their questions and tasks."
```
The system prompt affects how the chatbot:
- Interprets user requests
- Decides which tools to use
- Structures its responses
- Maintains conversation context
## Opik Integration
The chatbot includes built-in Opik observability integration:
### Opik Modes
For the command-line flag `--opik`:
- `hosted` (default): Use hosted Opik service
- `local`: Use local Opik instance
- `disabled`: Disable Opik tracing
### Configure Opik
Set environment variables for Opik:
```bash
# For hosted mode
export OPIK_API_KEY=your_opik_api_key
# For local mode
export OPIK_LOCAL_URL=http://localhost:8080
```
### Command Line Options
```bash
# Use hosted Opik (default)
ez-mcp-chatbot --opik hosted
# Use local Opik
ez-mcp-chatbot --opik local
# Disable Opik
ez-mcp-chatbot --opik disabled
# Use custom system prompt
ez-mcp-chatbot --system-prompt "You are a helpful coding assistant"
# Combine options
ez-mcp-chatbot --system-prompt "You are a data analysis expert" --opik local --debug
# Use custom tools file
ez-mcp-chatbot --tools-file "my_tools.py"
# Use tools file from URL
ez-mcp-chatbot --tools-file "https://example.com/my_tools.py"
# Override model arguments
ez-mcp-chatbot --model-args '{"temperature": 0.7, "max_tokens": 1000}'
# Override both model and model arguments
ez-mcp-chatbot --model "openai/gpt-4" --model-args '{"temperature": 0.3, "max_tokens": 2000}'
```
#### Available Options
- `config_path` - Path to the configuration file (default: ez-config.json)
- `--opik {local,hosted,disabled}` - Opik tracing mode (default: hosted)
- `--init` - Create a default ez-config.json file and exit
- `--debug` - Enable debug output during processing
- `--system-prompt TEXT` - Custom system prompt for the chatbot (overrides default)
- `--model MODEL` - Override the model specified in the config file
- `--tools-file TOOLS_FILE` - Path to a Python file containing tool definitions, or URL to download the file from. If provided, will create an MCP server configuration using this file.
- `--model-args MODEL_ARGS` - JSON string of additional keyword arguments to pass to the LLM model
## ez-mcp-eval
A command-line utility for evaluating LLM applications using Opik's evaluation framework. This tool provides a simple interface to run evaluations on datasets with various metrics, enabling you to measure and improve your LLM application's performance.
### Features
- **Dataset Evaluation**: Run evaluations on your datasets using Opik's evaluation framework
- **Multiple Metrics**: Support for various evaluation metrics (Hallucination, LevenshteinRatio, etc.)
- **Opik Integration**: Full integration with Opik for observability and tracking
- **Flexible Configuration**: Customizable prompts, models, and evaluation parameters
- **Rich Output**: Beautiful console output with progress tracking and results display
### Basic Usage
```bash
ez-mcp-eval --prompt "Answer the question" --dataset "my-dataset" --metric "Hallucination"
```
### Command-line Options
```
ez-mcp-eval [-h] [--prompt PROMPT] [--dataset DATASET] [--metric METRIC]
[--metrics-file METRICS_FILE] [--experiment-name EXPERIMENT_NAME]
[--opik {local,hosted,disabled}] [--debug] [--input INPUT]
[--output OUTPUT] [--list-metrics] [--model MODEL]
[--model-kwargs MODEL_KWARGS] [--config CONFIG] [--tools-file TOOLS_FILE]
[--num NUM]
```
#### Required Arguments
- `--prompt PROMPT` - The prompt to use for evaluation
- `--dataset DATASET` - Name of the dataset to evaluate on
- `--metric METRIC` - Name of the metric(s) to use for evaluation (comma-separated for multiple)
#### Optional Arguments
- `--metrics-file METRICS_FILE` - Path to a Python file containing metric definitions (alternative to using opik.evaluation.metrics)
- `--experiment-name EXPERIMENT_NAME` - Name for the evaluation experiment (default: ez-mcp-evaluation)
- `--opik {local,hosted,disabled}` - Opik tracing mode (default: hosted)
- `--debug` - Enable debug output
- `--input INPUT` - Input field name in the dataset (default: input)
- `--output OUTPUT` - Output field mapping in format reference=DATASET_FIELD (default: reference=answer)
- `--list-metrics` - List all available metrics and exit
- `--model MODEL` - LLM model to use for evaluation (default: gpt-3.5-turbo)
- `--model-kwargs MODEL_KWARGS` - JSON string of additional keyword arguments for the LLM model
- `--config CONFIG` - Path to MCP server configuration file (default: ez-config.json)
- `--tools-file TOOLS_FILE` - Path to a Python file containing tool definitions, or URL to download the file from. If provided, will create an MCP server configuration using this file.
- `--num NUM` - Number of items to evaluate from the dataset (takes first N items, default: all items)
### Dataset Loading
The `ez-mcp-eval` command supports loading datasets from two sources:
1. **Opik datasets**: If the dataset exists in your Opik account, it will be loaded directly
2. **opik_optimizer.datasets**: If the dataset is not found in Opik, the tool will automatically check for a function with the same name in `opik_optimizer.datasets` and create the dataset using that function
This allows you to use both pre-existing Opik datasets and dynamically generated datasets from the `opik_optimizer` package.
### Examples
#### Basic Evaluation
```bash
# Simple evaluation with Hallucination metric
ez-mcp-eval --prompt "Answer the question" --dataset "qa-dataset" --metric "Hallucination"
```
#### Multiple Metrics
```bash
# Evaluate with multiple metrics
ez-mcp-eval --prompt "Summarize this text" --dataset "summarization-dataset" --metric "Hallucination,LevenshteinRatio"
```
#### Custom Experiment Name
```bash
# Use a custom experiment name
ez-mcp-eval --prompt "Translate to French" --dataset "translation-dataset" --metric "LevenshteinRatio" --experiment-name "french-translation-test"
```
#### Custom Model and Parameters
```bash
# Use a different model with custom parameters
ez-mcp-eval --prompt "Answer the question" --dataset "qa-dataset" --metric "LevenshteinRatio" --model "gpt-4" --model-kwargs '{"temperature": 0.7, "max_tokens": 1000}'
```
#### Using opik_optimizer Datasets
```bash
# Use a dataset from opik_optimizer.datasets (automatically created if not in Opik)
ez-mcp-eval --prompt "Answer the question" --dataset "my_optimizer_dataset" --metric "Hallucination"
```
#### Custom Field Mappings
```bash
# Custom input and output field mappings
ez-mcp-eval --prompt "Answer the question" --dataset "qa-dataset" --metric "LevenshteinRatio" --input "question" --output "reference=answer"
```
### Field Validation
The `ez-mcp-eval` command now includes automatic validation of input and output field mappings to prevent common configuration errors:
#### Input Field Validation
- **What it checks**: The `--input` field must exist in the dataset items
- **When it runs**: Before starting the evaluation
- **Error handling**: If the field doesn't exist, the command stops with a clear error message showing available fields
#### Output Field Validation
- **What it checks**:
- The `--output` VALUE (dataset field) must exist in the dataset items
- The `--output` KEY (metric parameter) must be a valid parameter for the selected metric(s) score method
- **When it runs**: Before starting the evaluation
- **Error handling**: If validation fails, the command stops with clear error messages
#### Example Validation Errors
```bash
# Input field not found in dataset
❌ Input field 'question' not found in dataset items
Available fields: input, answer
# Output field not found in dataset
❌ Reference field 'response' not found in dataset items
Available fields: input, answer
# Invalid metric parameter
❌ Output reference 'reference' is not a valid parameter for metric 'LevenshteinRatio' score method
Available parameters: output, reference
```
This validation helps catch configuration errors early, saving time and preventing failed evaluations.
#### Using Custom Metrics from File
```bash
# Use custom metrics defined in a Python file
ez-mcp-eval --prompt "Answer the question" --dataset "qa-dataset" --metric "CustomMetric" --metrics-file "my_metrics.py"
```
#### Using Custom Tools File
```bash
# Use a custom tools file for MCP server configuration
ez-mcp-eval --prompt "Answer the question" --dataset "qa-dataset" --metric "LevenshteinRatio" --tools-file "my_tools.py"
# Use tools file from URL
ez-mcp-eval --prompt "Answer the question" --dataset "qa-dataset" --metric "LevenshteinRatio" --tools-file "https://example.com/my_tools.py"
```
#### List Available Metrics
```bash
# See all available metrics
ez-mcp-eval --list-metrics
```
#### Debug Mode
```bash
# Enable debug output for troubleshooting
ez-mcp-eval --prompt "Answer the question" --dataset "qa-dataset" --metric "Hallucination" --debug
```
### Custom Metrics
You can define custom metrics in a Python file and use them with the `--metrics-file` option. The metric file should contain metric classes that follow the same interface as Opik's built-in metrics.
#### Example Custom Metric File (`my_metrics.py`)
```python
class CustomMetric:
def __init__(self):
self.name = "CustomMetric"
def __call__(self, output, reference):
# Your custom evaluation logic here
# Return a score between 0 and 1
return 0.8 # Example score
```
Then use it with:
```bash
ez-mcp-eval --prompt "Answer the question" --dataset "qa-dataset" --metric "CustomMetric" --metrics-file "my_metrics.py"
```
### Opik Integration
The `ez-mcp-eval` tool integrates seamlessly with Opik for:
- **Dataset Management**: Load datasets from your Opik workspace
- **Prompt Management**: Use prompts stored in Opik or provide direct text
- **Experiment Tracking**: Track evaluation experiments with custom names
- **Observability**: Full tracing of LLM calls and evaluation processes
### Environment Setup
For Opik integration, set up your environment:
```bash
# For hosted Opik
export OPIK_API_KEY=your_opik_api_key
# For local Opik
export OPIK_LOCAL_URL=http://localhost:8080
```
### Available Metrics
The tool supports all metrics available in Opik's evaluation framework. Use `--list-metrics` to see the complete list, which includes:
- **Hallucination**: Detect hallucinated content in responses
- **LevenshteinRatio**: Measure text similarity using Levenshtein distance
- **ExactMatch**: Check for exact string matches
- **F1Score**: Calculate F1 score for classification tasks
- And many more...
### Output
The tool provides rich console output including:
- Progress tracking during evaluation
- Dataset information and statistics
- Evaluation results and metrics
- Error handling and debugging information
- Integration with Opik's experiment tracking
## ez-mcp-optimize
A command-line utility for optimizing LLM applications using Opik's optimization framework. This tool provides a simple interface to run prompt optimization on datasets with various metrics and optimizers, enabling you to improve your LLM application's performance through automated optimization.
### Features
- **Prompt Optimization**: Run optimization on your prompts using Opik's optimization framework
- **Multiple Optimizers**: Support for various optimization algorithms (EvolutionaryOptimizer, FewShotBayesianOptimizer, etc.)
- **Opik Integration**: Full integration with Opik for observability and tracking
- **Flexible Configuration**: Customizable prompts, models, and optimization parameters
- **Rich Output**: Beautiful console output with progress tracking and results display
### Basic Usage
```bash
ez-mcp-optimize --prompt "Answer the question" --dataset "my-dataset" --metric "Hallucination"
```
### Command-line Options
```
ez-mcp-optimize [-h] [--prompt PROMPT] [--dataset DATASET] [--metric METRIC]
[--metrics-file METRICS_FILE] [--experiment-name EXPERIMENT_NAME]
[--opik {local,hosted,disabled}] [--debug] [--input INPUT]
[--output OUTPUT] [--list-metrics] [--model MODEL]
[--model-kwargs MODEL_KWARGS] [--config CONFIG] [--tools-file TOOLS_FILE]
[--num NUM] [--optimizer OPTIMIZER] [--class-kwargs CLASS_KWARGS]
[--optimize-kwargs OPTIMIZE_KWARGS]
```
#### Required Arguments
- `--prompt PROMPT` - The prompt to use for optimization
- `--dataset DATASET` - Name of the dataset to optimize on
- `--metric METRIC` - Name of the metric(s) to use for optimization (comma-separated for multiple)
#### Optional Arguments
- `--metrics-file METRICS_FILE` - Path to a Python file containing metric definitions (alternative to using opik.evaluation.metrics)
- `--experiment-name EXPERIMENT_NAME` - Name for the optimization experiment (default: ez-mcp-optimization)
- `--opik {local,hosted,disabled}` - Opik tracing mode (default: hosted)
- `--debug` - Enable debug output
- `--input INPUT` - Input field name in the dataset (default: input)
- `--output OUTPUT` - Output field mapping. Accepts 'REFERENCE=FIELD', 'REFERENCE:FIELD', or just 'FIELD'. If only FIELD is provided, it will be used as the ChatPrompt user field. (default: reference=answer)
- `--list-metrics` - List all available metrics and exit
- `--model MODEL` - LLM model to use for optimization (default: gpt-3.5-turbo)
- `--model-kwargs MODEL_KWARGS` - JSON string of additional keyword arguments for the LLM model
- `--config CONFIG` - Path to MCP server configuration file (default: ez-config.json)
- `--tools-file TOOLS_FILE` - Path to a Python file containing tool definitions, or URL to download the file from. If provided, will create an MCP server configuration using this file.
- `--num NUM` - Number of items to optimize from the dataset (takes first N items, default: all items)
- `--optimizer OPTIMIZER` - Optimizer class to use for optimization (default: EvolutionaryOptimizer)
- `--class-kwargs CLASS_KWARGS` - JSON string of keyword arguments to pass to the optimizer constructor
- `--optimize-kwargs OPTIMIZE_KWARGS` - JSON string of keyword arguments to pass to the optimize_prompt() method
### Available Optimizers
The tool supports various optimization algorithms:
- **EvolutionaryOptimizer** (default): Genetic algorithm-based optimization
- **FewShotBayesianOptimizer**: Bayesian optimization with few-shot examples
- **MetaPromptOptimizer**: Meta-learning based optimization
- **GepaOptimizer**: Gradient-based optimization
- **MiproOptimizer**: Multi-objective optimization
### Examples
#### Basic Optimization
```bash
# Simple optimization with Hallucination metric
ez-mcp-optimize --prompt "Answer the question" --dataset "qa-dataset" --metric "Hallucination"
```
#### Multiple Metrics
```bash
# Optimize with multiple metrics
ez-mcp-optimize --prompt "Summarize this text" --dataset "summarization-dataset" --metric "Hallucination,LevenshteinRatio"
```
#### Custom Optimizer
```bash
# Use a different optimizer
ez-mcp-optimize --prompt "Answer the question" --dataset "qa-dataset" --metric "LevenshteinRatio" --optimizer "FewShotBayesianOptimizer"
```
#### Custom Optimizer Parameters
```bash
# Use custom optimizer parameters
ez-mcp-optimize --prompt "Answer the question" --dataset "qa-dataset" --metric "LevenshteinRatio" --class-kwargs '{"population_size": 50, "mutation_rate": 0.1}'
```
#### Custom Optimization Parameters
```bash
# Use custom optimization parameters
ez-mcp-optimize --prompt "Answer the question" --dataset "qa-dataset" --metric "LevenshteinRatio" --optimize-kwargs '{"auto_continue": true, "n_samples": 100}'
```
### Opik Integration
The `ez-mcp-optimize` tool integrates seamlessly with Opik for:
- **Dataset Management**: Load datasets from your Opik workspace
- **Prompt Management**: Use prompts stored in Opik or provide direct text
- **Experiment Tracking**: Track optimization experiments with custom names
- **Observability**: Full tracing of LLM calls and optimization processes
### Environment Setup
For Opik integration, set up your environment:
```bash
# For hosted Opik
export OPIK_API_KEY=your_opik_api_key
# For local Opik
export OPIK_LOCAL_URL=http://localhost:8080
```
### Output
The tool provides rich console output including:
- Progress tracking during optimization
- Dataset information and statistics
- Optimization results and metrics
- Error handling and debugging information
- Integration with Opik's experiment tracking
## License
This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.
## Support
- **Documentation**: [GitHub Repository](https://github.com/comet-ml/ez-mcp-toolbox)
- **Issues**: [GitHub Issues](https://github.com/comet-ml/ez-mcp-toolbox/issues)
## Acknowledgments
- Built with [Model Context Protocol (MCP)](https://modelcontextprotocol.io/)
- Powered by [LiteLLM](https://github.com/BerriAI/litellm)
- Observability by [Opik](https://opik.ai/)
- Rich console interface by [Rich](https://github.com/Textualize/rich)
## Development
1. Fork the repository
2. Create a feature branch: `git checkout -b feature-name`
3. Make your changes
4. Run tests: `pytest`
5. Format code: `black . && isort .`
6. Commit your changes: `git commit -m "Add feature"`
7. Push to the branch: `git push origin feature-name`
8. Submit a pull request
### Prerequisites
- Python 3.8 or higher
- OpenAI, Anthropic, or other LLM provider API key (for chatbot functionality)
### Install from Source
```bash
# Clone the repository
git clone https://github.com/comet-ml/ez-mcp-toolbox.git
cd ez-mcp-toolbox
# Install in development mode
pip install -e .
# Or install with development dependencies
pip install -e ".[dev]"
```
### Manually Install Dependencies
```bash
pip install -r requirements.txt
```
Raw data
{
"_id": null,
"home_page": null,
"name": "ez-mcp-toolbox",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": "Opik Team <support@comet.com>",
"keywords": "opik, mcp, model-context-protocol, llm, observability, debugging",
"author": null,
"author_email": "Opik Team <support@comet.com>",
"download_url": "https://files.pythonhosted.org/packages/f7/2b/f222bdc99bc32e3f3fad44f6e80ee955c242b54614eb9e5c1431fe482619/ez_mcp_toolbox-1.2.0.tar.gz",
"platform": null,
"description": "# EZ MCP Toolbox\n\n*A Comet ML Open Source Project*\n\nThis Python toolbox contains four command-line easy to use utilities:\n\n1. `ez-mcp-server` - turns a file of Python functions into a MCP server\n2. `ez-mcp-chatbot` - interactively debug MCP servers, with traces logged to [Opik](https://www.comet.com/site/products/opik/)\n3. `ez-mcp-eval` - evaluate LLM applications using Opik's evaluation framework\n4. `ez-mcp-optimize` - optimize LLM applications using Opik's optimization framework\n\n## Why?\n\nThe `ez-mcp-server` allows a quick way to examine tools, signatures, descriptions, latency, and return values. Combined with the chatbot, you can create a fast workflow to interate on your MCP tools.\n\nThe `ez-mcp-chatbot` allows a quick method to examine and debug LLM and MCP tool interactions, with observability available through [Opik](https://github.com/comet-ml/opik). Although the [Opik Playground](https://www.comet.com/docs/opik/opik-university/prompt-engineering/prompt-playground) gives you the ability to test your prompts on datasets, do A/B testing, and more, this chatbot gives you a command-line interaction, debugging tools, combined with Opik observability.\n\nThe `ez-mcp-eval` and `ez-mcp-optimize` commands provide evaluation and optimization capabilities for your LLM applications, enabling you to measure performance and automatically improve your prompts using Opik's evaluation and optimization frameworks.\n\n## Installation\n\n```\npip install ez-mcp-toolbox --upgrade\n```\n\n## Quick start\n\n### Interactive Chat with MCP Tools\n```\nez-mcp-chatbot\n```\n\nThat will start a `ez-mcp-server` (using example tools below) and the `ez-mcp-chatbot` configured to use those tools.\n\n### Evaluate LLM Applications\n```\nez-mcp-eval --prompt \"Answer the question\" --dataset \"my-dataset\" --metric \"Hallucination\"\n```\n\nThis will evaluate your LLM application using Opik's evaluation framework with your dataset and chosen metrics.\n\nYou can also limit the evaluation to the first N items of the dataset:\n\n```bash\nez-mcp-eval --prompt \"Answer the question\" --dataset \"large-dataset\" --metric \"Hallucination\" --num 100\n```\n\n### Customize the chatbot\n\nYou can customize the chatbot's behavior with a custom system prompt:\n\n```bash\n# Use a custom system prompt\nez-mcp-chatbot --system-prompt \"You are a helpful coding assistant\"\n\n# Create a default configuration\nez-mcp-chatbot --init\n```\n\nExample dialog:\n\n\n\nThis interaction of the LLM with the MCP tools will be logged, and available for examination and debugging in Opik:\n\n<img width=\"800\" alt=\"chatbot interaction as logged to opik\" src=\"https://github.com/user-attachments/assets/3ad0d79a-7f99-4211-aede-5e0cd81d80c3\" />\n\nThe rest of this file describes these three commands.\n\n## ez-mcp-server\n\nA command-line utility for turning a regular file of Python functions or classes into a full-fledged MCP server.\n\n### Example\n\nTake an existing Python file of functions, such as this file, `my_tools.py`:\n\n```python\n# my_tools.py\ndef add_numbers(a: float, b: float) -> float:\n \"\"\"\n Add two numbers together.\n\n Args:\n a: First number to add\n b: Second number to add\n\n Returns:\n The sum of a and b\n \"\"\"\n return a + b\n\ndef greet_user(name: str) -> str:\n \"\"\"\n Greet a user with a welcoming message.\n\n Args:\n name: The name of the person to greet\n\n Returns:\n A personalized greeting message\n \"\"\"\n return f\"Welcome to ez-mcp-server, {name}!\"\n```\n\nThen run the server with your custom tools:\n\n```bash\nez-mcp-server my_tools.py\n```\n\nYou can also load tools from installed Python modules:\n\n```bash\nez-mcp-server opik_optimizer.utils.core\n```\n\nOr download tools from a URL:\n\n```bash\nez-mcp-server https://example.com/my_tools.py\n```\n\nThe server will automatically:\n- Load all functions from your file or module (no ez_mcp_toolbox imports required)\n- Convert them to MCP tools\n- Generate JSON schemas from your function signatures\n- Use your docstrings as tool descriptions\n\nNote: if you just launch the server, it will wait for stdio input. This is designed\nto run from inside a system that will dynamically start the server (see below).\n\n### Command-line Options\n\n```\nez-mcp-server [-h] [--transport {stdio,sse}] [--host HOST] [--port PORT] [--include INCLUDE] [--exclude EXCLUDE] [tools_file]\n```\n\nPositional arguments:\n * `tools_file` - Path to tools file, module name, URL to download from, or 'none' to disable tools (e.g., 'my_tools.py', 'opik_optimizer.utils.core', 'https://example.com/tools.py', or 'none') (default: DEMO)\n\nOptions:\n * `-h`, `--help` - show this help message and exit\n * `--transport {stdio,sse}` - Transport method to use (default: `stdio`)\n * `--host HOST` - Host for SSE transport (default: `localhost`)\n * `--port PORT` - Port for SSE transport (default: `8000`)\n * `--include INCLUDE` - Python regex pattern to include only matching tool names\n * `--exclude EXCLUDE` - Python regex pattern to exclude matching tool names\n\n### Tool Filtering\n\nYou can control which tools are loaded using the `--include` and `--exclude` flags with Python regex patterns:\n\n```bash\n# Include only tools with \"add\" or \"multiply\" in the name\nez-mcp-server my_tools.py --include \"add|multiply\"\n\n# Exclude tools with \"greet\" or \"time\" in the name\nez-mcp-server my_tools.py --exclude \"greet|time\"\n\n# Use both filters together\nez-mcp-server my_tools.py --include \".*number.*\" --exclude \".*square.*\"\n\n# Use with default tools\nez-mcp-server --include \"add\" --exclude \"greet\"\n```\n\n**Filtering Logic:**\n- The `--include` filter is applied first, keeping only tools whose names match the regex pattern\n- The `--exclude` filter is then applied, removing any tools whose names match the regex pattern\n- Both filters can be used together for fine-grained control\n- Invalid regex patterns will cause the server to exit with an error message\n\n# Ez MCP Chatbot\n\nA powerful AI chatbot that integrates with Model Context Protocol (MCP) servers and provides observability through Opik tracing. This chatbot can connect to various MCP servers to access specialized tools and capabilities, making it a versatile assistant for different tasks.\n\n## Features\n\n- **MCP Integration**: Connect to multiple Model Context Protocol servers for specialized tool access\n- **Opik Observability**: Built-in tracing and observability with Opik integration\n- **Interactive Chat Interface**: Rich console interface with command history and auto-completion\n- **Python Code Execution**: Execute Python code directly in the chat environment\n- **Tool Management**: Discover and use tools from connected MCP servers\n- **Configurable**: JSON-based configuration for models and MCP servers\n- **Async Support**: Full asynchronous operation for better performance\n\n### MCP Integration\n\nThe server implements the full MCP specification:\n\n- **Tool Discovery**: Dynamic tool listing and metadata\n- **Tool Execution**: Asynchronous tool calling with proper error handling\n- **Protocol Compliance**: Full compatibility with MCP clients\n- **Extensibility**: Easy addition of new tools and capabilities\n\n## Example\n\nCreate a default configuration file:\n\n```bash\nez-mcp-chatbot --init\n```\n\nThis creates a `ez-config.json` file with default settings.\n\nEdit `ez-config.json` to specify your model and MCP servers. For example:\n\n```json\n{\n \"model\": \"openai/gpt-4o-mini\",\n \"model_kwargs\": {\n \"temperature\": 0.2\n },\n \"mcp_servers\": [\n {\n \"name\": \"ez-mcp-server\",\n \"description\": \"Ez MCP server from Python files\",\n \"command\": \"ez-mcp-server\",\n \"args\": [\"/path/to/my_tools.py\"]\n }\n ]\n}\n```\n\nSupported model formats:\n\n- `openai/gpt-4o-mini`\n- `anthropic/claude-3-sonnet`\n- `google/gemini-pro`\n- And many more through LiteLLM\n\n### Basic Commands\n\nInside the `ez-mcp-chatbot`, you can have a normal LLM conversation.\n\nIn addition, you have access to the following meta-commands:\n\n- `/clear` - Clear the conversation history\n- `/help` - Show available commands\n- `/debug on` or `/debug off` to toggle debug output\n- `/show tools` - to list all available tools\n- `/show tools SERVER` - to list tools for a specific server\n- `/run SERVER.TOOL` - to execute a tool\n- `! python_code` - to execute Python code (e.g., '! print(2+2)')\n- `quit` or `exit` - Exit the chatbot\n\n\n### Python Code Execution\n\nExecute Python code by prefixing with `!`:\n\n```\n! print(self.messages)\n! import math\n! math.sqrt(16)\n```\n\n### Tool Usage\n\nThe chatbot automatically discovers and uses tools from connected MCP servers. Simply ask questions that require tool usage, and the chatbot will automatically call the appropriate tools.\n\n## System Prompts\n\nThe chatbot uses a system prompt to define its behavior and personality. You can customize this using the `--system-prompt` command line option.\n\n### Default System Prompt\n\nBy default, the chatbot uses this system prompt:\n\n```\nYou are a helpful AI system for answering questions that can be answered\nwith any of the available tools.\n```\n\n### Custom System Prompts\n\nYou can override the default system prompt to customize the chatbot's behavior:\n\n```bash\n# Make it a coding assistant\nez-mcp-chatbot --system-prompt \"You are an expert Python developer who helps with coding tasks.\"\n\n# Make it a data analyst\nez-mcp-chatbot --system-prompt \"You are a data scientist who specializes in analyzing datasets and creating visualizations.\"\n\n# Make it more conversational\nez-mcp-chatbot --system-prompt \"You are a friendly AI assistant who loves to help users with their questions and tasks.\"\n```\n\nThe system prompt affects how the chatbot:\n- Interprets user requests\n- Decides which tools to use\n- Structures its responses\n- Maintains conversation context\n\n## Opik Integration\n\nThe chatbot includes built-in Opik observability integration:\n\n### Opik Modes\n\nFor the command-line flag `--opik`:\n\n- `hosted` (default): Use hosted Opik service\n- `local`: Use local Opik instance\n- `disabled`: Disable Opik tracing\n\n### Configure Opik\n\nSet environment variables for Opik:\n\n```bash\n# For hosted mode\nexport OPIK_API_KEY=your_opik_api_key\n\n# For local mode\nexport OPIK_LOCAL_URL=http://localhost:8080\n```\n\n### Command Line Options\n\n```bash\n# Use hosted Opik (default)\nez-mcp-chatbot --opik hosted\n\n# Use local Opik\nez-mcp-chatbot --opik local\n\n# Disable Opik\nez-mcp-chatbot --opik disabled\n\n# Use custom system prompt\nez-mcp-chatbot --system-prompt \"You are a helpful coding assistant\"\n\n# Combine options\nez-mcp-chatbot --system-prompt \"You are a data analysis expert\" --opik local --debug\n\n# Use custom tools file\nez-mcp-chatbot --tools-file \"my_tools.py\"\n\n# Use tools file from URL\nez-mcp-chatbot --tools-file \"https://example.com/my_tools.py\"\n\n# Override model arguments\nez-mcp-chatbot --model-args '{\"temperature\": 0.7, \"max_tokens\": 1000}'\n\n# Override both model and model arguments\nez-mcp-chatbot --model \"openai/gpt-4\" --model-args '{\"temperature\": 0.3, \"max_tokens\": 2000}'\n```\n\n#### Available Options\n\n- `config_path` - Path to the configuration file (default: ez-config.json)\n- `--opik {local,hosted,disabled}` - Opik tracing mode (default: hosted)\n- `--init` - Create a default ez-config.json file and exit\n- `--debug` - Enable debug output during processing\n- `--system-prompt TEXT` - Custom system prompt for the chatbot (overrides default)\n- `--model MODEL` - Override the model specified in the config file\n- `--tools-file TOOLS_FILE` - Path to a Python file containing tool definitions, or URL to download the file from. If provided, will create an MCP server configuration using this file.\n- `--model-args MODEL_ARGS` - JSON string of additional keyword arguments to pass to the LLM model\n\n## ez-mcp-eval\n\nA command-line utility for evaluating LLM applications using Opik's evaluation framework. This tool provides a simple interface to run evaluations on datasets with various metrics, enabling you to measure and improve your LLM application's performance.\n\n### Features\n\n- **Dataset Evaluation**: Run evaluations on your datasets using Opik's evaluation framework\n- **Multiple Metrics**: Support for various evaluation metrics (Hallucination, LevenshteinRatio, etc.)\n- **Opik Integration**: Full integration with Opik for observability and tracking\n- **Flexible Configuration**: Customizable prompts, models, and evaluation parameters\n- **Rich Output**: Beautiful console output with progress tracking and results display\n\n### Basic Usage\n\n```bash\nez-mcp-eval --prompt \"Answer the question\" --dataset \"my-dataset\" --metric \"Hallucination\"\n```\n\n### Command-line Options\n\n```\nez-mcp-eval [-h] [--prompt PROMPT] [--dataset DATASET] [--metric METRIC]\n [--metrics-file METRICS_FILE] [--experiment-name EXPERIMENT_NAME]\n [--opik {local,hosted,disabled}] [--debug] [--input INPUT]\n [--output OUTPUT] [--list-metrics] [--model MODEL]\n [--model-kwargs MODEL_KWARGS] [--config CONFIG] [--tools-file TOOLS_FILE]\n [--num NUM]\n```\n\n#### Required Arguments\n\n- `--prompt PROMPT` - The prompt to use for evaluation\n- `--dataset DATASET` - Name of the dataset to evaluate on\n- `--metric METRIC` - Name of the metric(s) to use for evaluation (comma-separated for multiple)\n\n#### Optional Arguments\n\n- `--metrics-file METRICS_FILE` - Path to a Python file containing metric definitions (alternative to using opik.evaluation.metrics)\n- `--experiment-name EXPERIMENT_NAME` - Name for the evaluation experiment (default: ez-mcp-evaluation)\n- `--opik {local,hosted,disabled}` - Opik tracing mode (default: hosted)\n- `--debug` - Enable debug output\n- `--input INPUT` - Input field name in the dataset (default: input)\n- `--output OUTPUT` - Output field mapping in format reference=DATASET_FIELD (default: reference=answer)\n- `--list-metrics` - List all available metrics and exit\n- `--model MODEL` - LLM model to use for evaluation (default: gpt-3.5-turbo)\n- `--model-kwargs MODEL_KWARGS` - JSON string of additional keyword arguments for the LLM model\n- `--config CONFIG` - Path to MCP server configuration file (default: ez-config.json)\n- `--tools-file TOOLS_FILE` - Path to a Python file containing tool definitions, or URL to download the file from. If provided, will create an MCP server configuration using this file.\n- `--num NUM` - Number of items to evaluate from the dataset (takes first N items, default: all items)\n\n### Dataset Loading\n\nThe `ez-mcp-eval` command supports loading datasets from two sources:\n\n1. **Opik datasets**: If the dataset exists in your Opik account, it will be loaded directly\n2. **opik_optimizer.datasets**: If the dataset is not found in Opik, the tool will automatically check for a function with the same name in `opik_optimizer.datasets` and create the dataset using that function\n\nThis allows you to use both pre-existing Opik datasets and dynamically generated datasets from the `opik_optimizer` package.\n\n### Examples\n\n#### Basic Evaluation\n```bash\n# Simple evaluation with Hallucination metric\nez-mcp-eval --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"Hallucination\"\n```\n\n#### Multiple Metrics\n```bash\n# Evaluate with multiple metrics\nez-mcp-eval --prompt \"Summarize this text\" --dataset \"summarization-dataset\" --metric \"Hallucination,LevenshteinRatio\"\n```\n\n#### Custom Experiment Name\n```bash\n# Use a custom experiment name\nez-mcp-eval --prompt \"Translate to French\" --dataset \"translation-dataset\" --metric \"LevenshteinRatio\" --experiment-name \"french-translation-test\"\n```\n\n#### Custom Model and Parameters\n```bash\n# Use a different model with custom parameters\nez-mcp-eval --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"LevenshteinRatio\" --model \"gpt-4\" --model-kwargs '{\"temperature\": 0.7, \"max_tokens\": 1000}'\n```\n\n#### Using opik_optimizer Datasets\n```bash\n# Use a dataset from opik_optimizer.datasets (automatically created if not in Opik)\nez-mcp-eval --prompt \"Answer the question\" --dataset \"my_optimizer_dataset\" --metric \"Hallucination\"\n```\n\n#### Custom Field Mappings\n```bash\n# Custom input and output field mappings\nez-mcp-eval --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"LevenshteinRatio\" --input \"question\" --output \"reference=answer\"\n```\n\n### Field Validation\n\nThe `ez-mcp-eval` command now includes automatic validation of input and output field mappings to prevent common configuration errors:\n\n#### Input Field Validation\n- **What it checks**: The `--input` field must exist in the dataset items\n- **When it runs**: Before starting the evaluation\n- **Error handling**: If the field doesn't exist, the command stops with a clear error message showing available fields\n\n#### Output Field Validation\n- **What it checks**:\n - The `--output` VALUE (dataset field) must exist in the dataset items\n - The `--output` KEY (metric parameter) must be a valid parameter for the selected metric(s) score method\n- **When it runs**: Before starting the evaluation\n- **Error handling**: If validation fails, the command stops with clear error messages\n\n#### Example Validation Errors\n\n```bash\n# Input field not found in dataset\n\u274c Input field 'question' not found in dataset items\n Available fields: input, answer\n\n# Output field not found in dataset\n\u274c Reference field 'response' not found in dataset items\n Available fields: input, answer\n\n# Invalid metric parameter\n\u274c Output reference 'reference' is not a valid parameter for metric 'LevenshteinRatio' score method\n Available parameters: output, reference\n```\n\nThis validation helps catch configuration errors early, saving time and preventing failed evaluations.\n\n#### Using Custom Metrics from File\n```bash\n# Use custom metrics defined in a Python file\nez-mcp-eval --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"CustomMetric\" --metrics-file \"my_metrics.py\"\n```\n\n#### Using Custom Tools File\n```bash\n# Use a custom tools file for MCP server configuration\nez-mcp-eval --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"LevenshteinRatio\" --tools-file \"my_tools.py\"\n\n# Use tools file from URL\nez-mcp-eval --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"LevenshteinRatio\" --tools-file \"https://example.com/my_tools.py\"\n```\n\n#### List Available Metrics\n```bash\n# See all available metrics\nez-mcp-eval --list-metrics\n```\n\n#### Debug Mode\n```bash\n# Enable debug output for troubleshooting\nez-mcp-eval --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"Hallucination\" --debug\n```\n\n### Custom Metrics\n\nYou can define custom metrics in a Python file and use them with the `--metrics-file` option. The metric file should contain metric classes that follow the same interface as Opik's built-in metrics.\n\n#### Example Custom Metric File (`my_metrics.py`)\n\n```python\nclass CustomMetric:\n def __init__(self):\n self.name = \"CustomMetric\"\n\n def __call__(self, output, reference):\n # Your custom evaluation logic here\n # Return a score between 0 and 1\n return 0.8 # Example score\n```\n\nThen use it with:\n```bash\nez-mcp-eval --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"CustomMetric\" --metrics-file \"my_metrics.py\"\n```\n\n### Opik Integration\n\nThe `ez-mcp-eval` tool integrates seamlessly with Opik for:\n\n- **Dataset Management**: Load datasets from your Opik workspace\n- **Prompt Management**: Use prompts stored in Opik or provide direct text\n- **Experiment Tracking**: Track evaluation experiments with custom names\n- **Observability**: Full tracing of LLM calls and evaluation processes\n\n### Environment Setup\n\nFor Opik integration, set up your environment:\n\n```bash\n# For hosted Opik\nexport OPIK_API_KEY=your_opik_api_key\n\n# For local Opik\nexport OPIK_LOCAL_URL=http://localhost:8080\n```\n\n### Available Metrics\n\nThe tool supports all metrics available in Opik's evaluation framework. Use `--list-metrics` to see the complete list, which includes:\n\n- **Hallucination**: Detect hallucinated content in responses\n- **LevenshteinRatio**: Measure text similarity using Levenshtein distance\n- **ExactMatch**: Check for exact string matches\n- **F1Score**: Calculate F1 score for classification tasks\n- And many more...\n\n### Output\n\nThe tool provides rich console output including:\n\n- Progress tracking during evaluation\n- Dataset information and statistics\n- Evaluation results and metrics\n- Error handling and debugging information\n- Integration with Opik's experiment tracking\n\n## ez-mcp-optimize\n\nA command-line utility for optimizing LLM applications using Opik's optimization framework. This tool provides a simple interface to run prompt optimization on datasets with various metrics and optimizers, enabling you to improve your LLM application's performance through automated optimization.\n\n### Features\n\n- **Prompt Optimization**: Run optimization on your prompts using Opik's optimization framework\n- **Multiple Optimizers**: Support for various optimization algorithms (EvolutionaryOptimizer, FewShotBayesianOptimizer, etc.)\n- **Opik Integration**: Full integration with Opik for observability and tracking\n- **Flexible Configuration**: Customizable prompts, models, and optimization parameters\n- **Rich Output**: Beautiful console output with progress tracking and results display\n\n### Basic Usage\n\n```bash\nez-mcp-optimize --prompt \"Answer the question\" --dataset \"my-dataset\" --metric \"Hallucination\"\n```\n\n### Command-line Options\n\n```\nez-mcp-optimize [-h] [--prompt PROMPT] [--dataset DATASET] [--metric METRIC]\n [--metrics-file METRICS_FILE] [--experiment-name EXPERIMENT_NAME]\n [--opik {local,hosted,disabled}] [--debug] [--input INPUT]\n [--output OUTPUT] [--list-metrics] [--model MODEL]\n [--model-kwargs MODEL_KWARGS] [--config CONFIG] [--tools-file TOOLS_FILE]\n [--num NUM] [--optimizer OPTIMIZER] [--class-kwargs CLASS_KWARGS]\n [--optimize-kwargs OPTIMIZE_KWARGS]\n```\n\n#### Required Arguments\n\n- `--prompt PROMPT` - The prompt to use for optimization\n- `--dataset DATASET` - Name of the dataset to optimize on\n- `--metric METRIC` - Name of the metric(s) to use for optimization (comma-separated for multiple)\n\n#### Optional Arguments\n\n- `--metrics-file METRICS_FILE` - Path to a Python file containing metric definitions (alternative to using opik.evaluation.metrics)\n- `--experiment-name EXPERIMENT_NAME` - Name for the optimization experiment (default: ez-mcp-optimization)\n- `--opik {local,hosted,disabled}` - Opik tracing mode (default: hosted)\n- `--debug` - Enable debug output\n- `--input INPUT` - Input field name in the dataset (default: input)\n- `--output OUTPUT` - Output field mapping. Accepts 'REFERENCE=FIELD', 'REFERENCE:FIELD', or just 'FIELD'. If only FIELD is provided, it will be used as the ChatPrompt user field. (default: reference=answer)\n- `--list-metrics` - List all available metrics and exit\n- `--model MODEL` - LLM model to use for optimization (default: gpt-3.5-turbo)\n- `--model-kwargs MODEL_KWARGS` - JSON string of additional keyword arguments for the LLM model\n- `--config CONFIG` - Path to MCP server configuration file (default: ez-config.json)\n- `--tools-file TOOLS_FILE` - Path to a Python file containing tool definitions, or URL to download the file from. If provided, will create an MCP server configuration using this file.\n- `--num NUM` - Number of items to optimize from the dataset (takes first N items, default: all items)\n- `--optimizer OPTIMIZER` - Optimizer class to use for optimization (default: EvolutionaryOptimizer)\n- `--class-kwargs CLASS_KWARGS` - JSON string of keyword arguments to pass to the optimizer constructor\n- `--optimize-kwargs OPTIMIZE_KWARGS` - JSON string of keyword arguments to pass to the optimize_prompt() method\n\n### Available Optimizers\n\nThe tool supports various optimization algorithms:\n\n- **EvolutionaryOptimizer** (default): Genetic algorithm-based optimization\n- **FewShotBayesianOptimizer**: Bayesian optimization with few-shot examples\n- **MetaPromptOptimizer**: Meta-learning based optimization\n- **GepaOptimizer**: Gradient-based optimization\n- **MiproOptimizer**: Multi-objective optimization\n\n### Examples\n\n#### Basic Optimization\n```bash\n# Simple optimization with Hallucination metric\nez-mcp-optimize --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"Hallucination\"\n```\n\n#### Multiple Metrics\n```bash\n# Optimize with multiple metrics\nez-mcp-optimize --prompt \"Summarize this text\" --dataset \"summarization-dataset\" --metric \"Hallucination,LevenshteinRatio\"\n```\n\n#### Custom Optimizer\n```bash\n# Use a different optimizer\nez-mcp-optimize --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"LevenshteinRatio\" --optimizer \"FewShotBayesianOptimizer\"\n```\n\n#### Custom Optimizer Parameters\n```bash\n# Use custom optimizer parameters\nez-mcp-optimize --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"LevenshteinRatio\" --class-kwargs '{\"population_size\": 50, \"mutation_rate\": 0.1}'\n```\n\n#### Custom Optimization Parameters\n```bash\n# Use custom optimization parameters\nez-mcp-optimize --prompt \"Answer the question\" --dataset \"qa-dataset\" --metric \"LevenshteinRatio\" --optimize-kwargs '{\"auto_continue\": true, \"n_samples\": 100}'\n```\n\n### Opik Integration\n\nThe `ez-mcp-optimize` tool integrates seamlessly with Opik for:\n\n- **Dataset Management**: Load datasets from your Opik workspace\n- **Prompt Management**: Use prompts stored in Opik or provide direct text\n- **Experiment Tracking**: Track optimization experiments with custom names\n- **Observability**: Full tracing of LLM calls and optimization processes\n\n### Environment Setup\n\nFor Opik integration, set up your environment:\n\n```bash\n# For hosted Opik\nexport OPIK_API_KEY=your_opik_api_key\n\n# For local Opik\nexport OPIK_LOCAL_URL=http://localhost:8080\n```\n\n### Output\n\nThe tool provides rich console output including:\n\n- Progress tracking during optimization\n- Dataset information and statistics\n- Optimization results and metrics\n- Error handling and debugging information\n- Integration with Opik's experiment tracking\n\n## License\n\nThis project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.\n\n## Support\n\n- **Documentation**: [GitHub Repository](https://github.com/comet-ml/ez-mcp-toolbox)\n- **Issues**: [GitHub Issues](https://github.com/comet-ml/ez-mcp-toolbox/issues)\n\n## Acknowledgments\n\n- Built with [Model Context Protocol (MCP)](https://modelcontextprotocol.io/)\n- Powered by [LiteLLM](https://github.com/BerriAI/litellm)\n- Observability by [Opik](https://opik.ai/)\n- Rich console interface by [Rich](https://github.com/Textualize/rich)\n\n## Development\n\n1. Fork the repository\n2. Create a feature branch: `git checkout -b feature-name`\n3. Make your changes\n4. Run tests: `pytest`\n5. Format code: `black . && isort .`\n6. Commit your changes: `git commit -m \"Add feature\"`\n7. Push to the branch: `git push origin feature-name`\n8. Submit a pull request\n\n### Prerequisites\n\n- Python 3.8 or higher\n- OpenAI, Anthropic, or other LLM provider API key (for chatbot functionality)\n\n### Install from Source\n\n```bash\n# Clone the repository\ngit clone https://github.com/comet-ml/ez-mcp-toolbox.git\ncd ez-mcp-toolbox\n\n# Install in development mode\npip install -e .\n\n# Or install with development dependencies\npip install -e \".[dev]\"\n```\n\n### Manually Install Dependencies\n\n```bash\npip install -r requirements.txt\n```\n",
"bugtrack_url": null,
"license": "Apache License\n Version 2.0, January 2004\n http://www.apache.org/licenses/\n \n TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION\n \n 1. Definitions.\n \n \"License\" shall mean the terms and conditions for use, reproduction,\n and distribution as defined by Sections 1 through 9 of this document.\n \n \"Licensor\" shall mean the copyright owner or entity authorized by\n the copyright owner that is granting the License.\n \n \"Legal Entity\" shall mean the union of the acting entity and all\n other entities that control, are controlled by, or are under common\n control with that entity. For the purposes of this definition,\n \"control\" means (i) the power, direct or indirect, to cause the\n direction or management of such entity, whether by contract or\n otherwise, or (ii) ownership of fifty percent (50%) or more of the\n outstanding shares, or (iii) beneficial ownership of such entity.\n \n \"You\" (or \"Your\") shall mean an individual or Legal Entity\n exercising permissions granted by this License.\n \n \"Source\" form shall mean the preferred form for making modifications,\n including but not limited to software source code, documentation\n source, and configuration files.\n \n \"Object\" form shall mean any form resulting from mechanical\n transformation or translation of a Source form, including but\n not limited to compiled object code, generated documentation,\n and conversions to other media types.\n \n \"Work\" shall mean the work of authorship, whether in Source or\n Object form, made available under the License, as indicated by a\n copyright notice that is included in or attached to the work\n (an example is provided in the Appendix below).\n \n \"Derivative Works\" shall mean any work, whether in Source or Object\n form, that is based on (or derived from) the Work and for which the\n editorial revisions, annotations, elaborations, or other modifications\n represent, as a whole, an original work of authorship. For the purposes\n of this License, Derivative Works shall not include works that remain\n separable from, or merely link (or bind by name) to the interfaces of,\n the Work and Derivative Works thereof.\n \n \"Contribution\" shall mean any work of authorship, including\n the original version of the Work and any modifications or additions\n to that Work or Derivative Works thereof, that is intentionally\n submitted to Licensor for inclusion in the Work by the copyright owner\n or by an individual or Legal Entity authorized to submit on behalf of\n the copyright owner. For the purposes of this definition, \"submitted\"\n means any form of electronic, verbal, or written communication sent\n to the Licensor or its representatives, including but not limited to\n communication on electronic mailing lists, source code control systems,\n and issue tracking systems that are managed by, or on behalf of, the\n Licensor for the purpose of discussing and improving the Work, but\n excluding communication that is conspicuously marked or otherwise\n designated in writing by the copyright owner as \"Not a Contribution.\"\n \n \"Contributor\" shall mean Licensor and any individual or Legal Entity\n on behalf of whom a Contribution has been received by Licensor and\n subsequently incorporated within the Work.\n \n 2. Grant of Copyright License. Subject to the terms and conditions of\n this License, each Contributor hereby grants to You a perpetual,\n worldwide, non-exclusive, no-charge, royalty-free, irrevocable\n copyright license to reproduce, prepare Derivative Works of,\n publicly display, publicly perform, sublicense, and distribute the\n Work and such Derivative Works in Source or Object form.\n \n 3. Grant of Patent License. Subject to the terms and conditions of\n this License, each Contributor hereby grants to You a perpetual,\n worldwide, non-exclusive, no-charge, royalty-free, irrevocable\n (except as stated in this section) patent license to make, have made,\n use, offer to sell, sell, import, and otherwise transfer the Work,\n where such license applies only to those patent claims licensable\n by such Contributor that are necessarily infringed by their\n Contribution(s) alone or by combination of their Contribution(s)\n with the Work to which such Contribution(s) was submitted. If You\n institute patent litigation against any entity (including a\n cross-claim or counterclaim in a lawsuit) alleging that the Work\n or a Contribution incorporated within the Work constitutes direct\n or contributory patent infringement, then any patent licenses\n granted to You under this License for that Work shall terminate\n as of the date such litigation is filed.\n \n 4. Redistribution. You may reproduce and distribute copies of the\n Work or Derivative Works thereof in any medium, with or without\n modifications, and in Source or Object form, provided that You\n meet the following conditions:\n \n (a) You must give any other recipients of the Work or\n Derivative Works a copy of this License; and\n \n (b) You must cause any modified files to carry prominent notices\n stating that You changed the files; and\n \n (c) You must retain, in the Source form of any Derivative Works\n that You distribute, all copyright, patent, trademark, and\n attribution notices from the Source form of the Work,\n excluding those notices that do not pertain to any part of\n the Derivative Works; and\n \n (d) If the Work includes a \"NOTICE\" text file as part of its\n distribution, then any Derivative Works that You distribute must\n include a readable copy of the attribution notices contained\n within such NOTICE file, excluding those notices that do not\n pertain to any part of the Derivative Works, in at least one\n of the following places: within a NOTICE text file distributed\n as part of the Derivative Works; within the Source form or\n documentation, if provided along with the Derivative Works; or,\n within a display generated by the Derivative Works, if and\n wherever such third-party notices normally appear. The contents\n of the NOTICE file are for informational purposes only and\n do not modify the License. You may add Your own attribution\n notices within Derivative Works that You distribute, alongside\n or as an addendum to the NOTICE text from the Work, provided\n that such additional attribution notices cannot be construed\n as modifying the License.\n \n You may add Your own copyright statement to Your modifications and\n may provide additional or different license terms and conditions\n for use, reproduction, or distribution of Your modifications, or\n for any such Derivative Works as a whole, provided Your use,\n reproduction, and distribution of the Work otherwise complies with\n the conditions stated in this License.\n \n 5. Submission of Contributions. Unless You explicitly state otherwise,\n any Contribution intentionally submitted for inclusion in the Work\n by You to the Licensor shall be under the terms and conditions of\n this License, without any additional terms or conditions.\n Notwithstanding the above, nothing herein shall supersede or modify\n the terms of any separate license agreement you may have executed\n with Licensor regarding such Contributions.\n \n 6. Trademarks. This License does not grant permission to use the trade\n names, trademarks, service marks, or product names of the Licensor,\n except as required for reasonable and customary use in describing the\n origin of the Work and reproducing the content of the NOTICE file.\n \n 7. Disclaimer of Warranty. Unless required by applicable law or\n agreed to in writing, Licensor provides the Work (and each\n Contributor provides its Contributions) on an \"AS IS\" BASIS,\n WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or\n implied, including, without limitation, any warranties or conditions\n of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A\n PARTICULAR PURPOSE. You are solely responsible for determining the\n appropriateness of using or redistributing the Work and assume any\n risks associated with Your exercise of permissions under this License.\n \n 8. Limitation of Liability. In no event and under no legal theory,\n whether in tort (including negligence), contract, or otherwise,\n unless required by applicable law (such as deliberate and grossly\n negligent acts) or agreed to in writing, shall any Contributor be\n liable to You for damages, including any direct, indirect, special,\n incidental, or consequential damages of any character arising as a\n result of this License or out of the use or inability to use the\n Work (including but not limited to damages for loss of goodwill,\n work stoppage, computer failure or malfunction, or any and all\n other commercial damages or losses), even if such Contributor\n has been advised of the possibility of such damages.\n \n 9. Accepting Warranty or Additional Liability. While redistributing\n the Work or Derivative Works thereof, You may choose to offer,\n and charge a fee for, acceptance of support, warranty, indemnity,\n or other liability obligations and/or rights consistent with this\n License. However, in accepting such obligations, You may act only\n on Your own behalf and on Your sole responsibility, not on behalf\n of any other Contributor, and only if You agree to indemnify,\n defend, and hold each Contributor harmless for any liability\n incurred by, or claims asserted against, such Contributor by reason\n of your accepting any such warranty or additional liability.\n \n END OF TERMS AND CONDITIONS\n \n APPENDIX: How to apply the Apache License to your work.\n \n To apply the Apache License to your work, attach the following\n boilerplate notice, with the fields enclosed by brackets \"[]\"\n replaced with your own identifying information. (Don't include\n the brackets!) The text should be enclosed in the appropriate\n comment syntax for the file format. We also recommend that a\n file or class name and description of purpose be included on the\n same \"printed page\" as the copyright notice for easier\n identification within third-party archives.\n \n Copyright [yyyy] [name of copyright owner]\n \n Licensed under the Apache License, Version 2.0 (the \"License\");\n you may not use this file except in compliance with the License.\n You may obtain a copy of the License at\n \n http://www.apache.org/licenses/LICENSE-2.0\n \n Unless required by applicable law or agreed to in writing, software\n distributed under the License is distributed on an \"AS IS\" BASIS,\n WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n See the License for the specific language governing permissions and\n limitations under the License.\n ",
"summary": "Utilities for creating and debugging MCP tools",
"version": "1.2.0",
"project_urls": {
"Bug Tracker": "https://github.com/comet-ml/ez-mcp-toolbox/issues",
"Documentation": "https://github.com/comet-ml/ez-mcp-toolbox#readme",
"Homepage": "https://github.com/comet-ml/ez-mcp-toolbox",
"Repository": "https://github.com/comet-ml/ez-mcp-toolbox"
},
"split_keywords": [
"opik",
" mcp",
" model-context-protocol",
" llm",
" observability",
" debugging"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "a9ad0dd991f73a164fb5e6f7113ce9a2adc7ef61841e49229b3cd754b2a854ad",
"md5": "0cde151dd2a43c0280a06c83fc7d8e26",
"sha256": "2a06ca9ece15a134daa31d6c831b77c7bb5d05527ad6496d183aeefbb91ddbd1"
},
"downloads": -1,
"filename": "ez_mcp_toolbox-1.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0cde151dd2a43c0280a06c83fc7d8e26",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 65718,
"upload_time": "2025-10-21T11:54:37",
"upload_time_iso_8601": "2025-10-21T11:54:37.092109Z",
"url": "https://files.pythonhosted.org/packages/a9/ad/0dd991f73a164fb5e6f7113ce9a2adc7ef61841e49229b3cd754b2a854ad/ez_mcp_toolbox-1.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f72bf222bdc99bc32e3f3fad44f6e80ee955c242b54614eb9e5c1431fe482619",
"md5": "a4a76ed5bf23607258646d0377c815ce",
"sha256": "84e20f422204f5f4759a92f181635ff9fe732c090ca7ba55fd055a45cc246ac8"
},
"downloads": -1,
"filename": "ez_mcp_toolbox-1.2.0.tar.gz",
"has_sig": false,
"md5_digest": "a4a76ed5bf23607258646d0377c815ce",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 72990,
"upload_time": "2025-10-21T11:54:38",
"upload_time_iso_8601": "2025-10-21T11:54:38.572003Z",
"url": "https://files.pythonhosted.org/packages/f7/2b/f222bdc99bc32e3f3fad44f6e80ee955c242b54614eb9e5c1431fe482619/ez_mcp_toolbox-1.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-21 11:54:38",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "comet-ml",
"github_project": "ez-mcp-toolbox",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "mcp",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "pydantic",
"specs": [
[
">=",
"2.0.0"
]
]
},
{
"name": "python-dotenv",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "httpx",
"specs": [
[
">=",
"0.25.0"
]
]
},
{
"name": "typing-extensions",
"specs": [
[
">=",
"4.0.0"
]
]
},
{
"name": "opik",
"specs": [
[
">=",
"0.1.0"
]
]
},
{
"name": "opik_optimizer",
"specs": [
[
">=",
"0.1.0"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.5.0"
]
]
},
{
"name": "pillow",
"specs": [
[
">=",
"9.0.0"
]
]
},
{
"name": "fastapi",
"specs": [
[
">=",
"0.100.0"
]
]
},
{
"name": "uvicorn",
"specs": [
[
">=",
"0.20.0"
]
]
},
{
"name": "litellm",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "rich",
"specs": [
[
">=",
"13.0.0"
]
]
},
{
"name": "prompt-toolkit",
"specs": [
[
">=",
"3.0.0"
]
]
},
{
"name": "nest-asyncio",
"specs": [
[
">=",
"1.5.0"
]
]
}
],
"lcname": "ez-mcp-toolbox"
}