jgtml


Namejgtml JSON
Version 0.0.346 PyPI version JSON
download
home_pagehttps://github.com/jgwill/jgtml
SummaryJGT Ml - Machine Learning Tools
upload_time2025-07-11 20:45:26
maintainerNone
docs_urlNone
authorGUillaume Isabelle
requires_python>=3.7
licenseNone
keywords data
VCS
bugtrack_url
requirements pandas python-dateutil numpy scipy scikit-learn tlid jgtutils jgtpy jgtapy jgtfxcon seaborn dash aiohttp python-dotenv pyarrow
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ๐ŸŠ JGTML - Trading Signal Analysis Platform

A Python-based trading signal analysis system focused on fractal patterns, Alligator indicators, and multi-timeframe confluence detection.

## ๐ŸŽฏ Core Purpose

JGTML analyzes the effectiveness of trading signals within larger market structure contexts, providing tools for:

- **Signal Validation**: Analyze FDB (Fractal Divergent Bar) and Alligator-based signals
- **Multi-Timeframe Analysis**: Process signals across H1, H4, D1, W1, M1 timeframes  
- **Performance Metrics**: Calculate win rates, profit/loss ratios, and signal quality
- **Trade Lifecycle Management**: From entry validation through exit strategies

## ๐Ÿ—๏ธ Architecture

### Core Dependencies
- **[jgtpy](https://jgtpy.jgwill.com)**: Market data acquisition wrapper from [jgtfxcon](https://jgtfxcon.jgwill.com) and indicator calculations and signals generation.
- **[jgtutils](https://jgtutils.jgwill.com)**: Common utilities and constants.  Contains the logics for reading $HOME/.jgt/config.json and $HOME/.jgt/settings.json for all app/cli to have all the context they need.  jgtutils also uses [jgtcore](https://pypi.org/project/jgtcore/) which start become the library for settings and configurations (separating jgutils that has utilities from actual libraries which is in progress)
- **pandas**: Data manipulation and analysis
- **numpy**: Numerical computations

### Key Components

#### ๐Ÿ“Š Signal Processing
- [`jgtml/SignalOrderingHelper.py`](jgtml/SignalOrderingHelper.py): Signal validation and risk calculation
- [`jgtml/jtc.py`](jgtml/jtc.py): Target calculation and signal analysis core
- [`jgtml/TideAlligatorAnalysis.py`](jgtml/TideAlligatorAnalysis.py): Unified Alligator analysis (Regular, Big, Tide) - Potential Usage not that obvious yet, it was unified by agents so we could probably use it into further code such as the FDBScan before we enter the market  
- [`jgtml/alligator_cli.py`](jgtml/alligator_cli.py): **๐ŸŠ NEW** Unified Alligator CLI with graceful TTF pattern handling
- TODO add TTF (TTF != Time-To-Future but more like feature of multiple timeframe)  probably ttfcli.py

#### ๐Ÿš€ Command Line Tools
- [`jgtml/jgtmlcli.py`](jgtml/jgtmlcli.py): Main CLI for data processing
- [`jgtml/mxcli.py`](jgtml/mxcli.py): Matrix generation and analysis - (Probably the next CLI Wrapper of what jgtml/jgtmlcli.py was/is doing which is generating the mxdata which contains targets for the fdb signals (buy/sell) so we could do machine learning feature design etc).  It will probably be integrated with fdb_signal_quality_predictor.py, fdb_pattern_intelligence.py, unified_discovery_dataset_generator.py,...
- [`jgtml/jgtapp.py`](jgtml/jgtapp.py): Trading operation management (includes legacy `tide` command wrapper) - IT was designed to contains all commands that jgtml offers along with what jgwill/jgtpy offers such as idscli and cdscli so we can access generating indicators and signals data into our logics.  This is the app used to create entryOrder in the market, look an existing trade to trail the alligator's line for exit strategie, etc.  TODO: Document way further and integrate the whole values developped with alligator_cli, 
- [`jgtml/alligator_cli.py`](jgtml/alligator_cli.py): **๐ŸŠ Unified Alligator Analysis CLI** - Replaces `ptojgtmltidealligator`/`ptojgtmlbigalligator`

#### ๐Ÿงฌ Memory & Persistence  
- [`garden_one/trading_echo_lattice/`](garden_one/trading_echo_lattice/): Signal crystallization and memory storage - That is just a prototype done by our agents that is not quite obvious yet, that would not be a priority to work with that except if really relevant.
- Integration with Upstash Redis for persistent analysis results

## ๐Ÿš€ Quick Start for developer

### Installation
```bash
# Install dependencies
pip install jgtpy jgtutils pandas numpy python-dateutil

# Install JGTML
pip install -e .
```

### Basic Usage
```bash
# Process signals for an instrument
jgtmlcli -i SPX500 -t D1 --full --fresh

# Analyze signal performance  
python -m garden_one.trading_echo_lattice.cli process -i SPX500 -t D1 -d S

# Generate analysis matrix
mxcli -i EUR/USD -t H4 --fresh
```

## ๐Ÿ“ˆ Trading Strategies

### Five Dimensions + Triple Alligator Confluence
Multi-indicator alignment detection using:
1. **Alligator Lines**: Jaw, Teeth, Lips confluence
2. **Fractal Signals**: FDB breakout validation  
3. **Awesome Oscillator**: Momentum confirmation
4. **Multi-Timeframe**: Higher TF bias confirmation
5. **Volume Analysis**: MFI integration

**Implementation**: [`TradingEchoLattice.detect_breakouts()`](garden_one/trading_echo_lattice/src/echo_lattice_core.py#L273)

### Green Dragon Breakout
FDB-based breakout detection with Alligator mouth validation.

**Implementation**: [`fdb_scanner_2408.py`](jgtml/fdb_scanner_2408.py)

## ๐Ÿ”ง CLI Reference

See [CLI_HELP.md](CLI_HELP.md) for complete command documentation.

### Core Commands
```bash
# Data Processing
jgtmlcli -i INSTRUMENT -t TIMEFRAME [--full] [--fresh]
mxcli -i INSTRUMENT -t TIMEFRAME [--fresh]

# Unified Alligator Analysis โœจ NEW โœจ
python -m jgtml.alligator_cli -i SPX500 -t D1 -d S --type tide    # Single Alligator
python -m jgtml.alligator_cli -i EUR/USD -t H4 -d B --type all    # Multi-Alligator convergence
python -m jgtml.alligator_cli -i GBPUSD -t D1 -d S --generate-spec # Generate .jgtml-spec

# Legacy Support (redirects to unified CLI)
jgtapp tide -i SPX500 -t D1 B  # Legacy wrapper โ†’ unified Alligator CLI

# Trading Operations  
jgtapp fxaddorder -i EUR/USD -n 0.1 -r 1.0950 -d B -x 1.0900
jgtapp fxmvstopgator -i EUR/USD -t H4 -tid TRADE_ID --lips

# Signal Analysis
python -m garden_one.trading_echo_lattice.cli process -i SPX500 -t D1,H4 -d S
python -m garden_one.trading_echo_lattice.cli search --min-win-rate 60
```

## ๐Ÿ“Š Data Flow

```
Market Data (jgtpy) โ†’ Signal Processing (jtc) โ†’ Analysis (CLI tools) โ†’ Memory Lattice (Redis)
```

1. **Data Acquisition**: Pull OHLC data via jgtpy
2. **Indicator Calculation**: Generate Alligator, AO, Fractals, MFI
3. **Signal Detection**: Identify valid entry/exit signals  
4. **Performance Analysis**: Calculate win rates and profitability
5. **Memory Storage**: Crystallize results in Redis for pattern recognition

## ๐Ÿงช Development

### Running Tests
```bash
python -m pytest tests/
```

### Contributing
1. Focus on signal accuracy and performance metrics
2. Maintain compatibility with jgtpy data structures
3. Document new indicators and validation logic
4. Test across multiple timeframes and instruments

## ๐Ÿ”„ Recursive Architecture

While JGTML operates as a practical trading platform, it embodies recursive principles:

- **Memory Patterns**: Each analysis builds upon previous signal history
- **Multi-Scale Awareness**: Signals are validated across multiple timeframes
- **Adaptive Learning**: Performance metrics inform future signal weighting

*The system grows more intelligent through iteration, not just accumulation.*

---

๐Ÿง  **Technical Foundation**: Precise signal analysis with mathematical rigor  
๐ŸŒธ **Intuitive Interface**: Clear CLI flows that make complex analysis accessible  
๐ŸŽต **Rhythmic Patterns**: Market timing encoded in fractal mathematics

*Built for traders who understand that the best signals emerge from the intersection of technical precision and pattern recognition.*

## ๐ŸŠ Unified Alligator Analysis

### Multi-Timeframe Convergence System โœจ NEW โœจ
The unified Alligator CLI consolidates three powerful analysis frameworks into a single, graceful interface:

#### ๐Ÿ” **Regular Alligator** (5-8-13 periods)
- **Purpose**: Quick market direction detection and entry signals
- **Best For**: Day trading, scalping, short-term momentum
- **Signals**: Immediate price action around Alligator mouth

#### ๐ŸŒŠ **Big Alligator** (34-55-89 periods)  
- **Purpose**: Intermediate cycle analysis and trend validation
- **Best For**: Swing trading, weekly positioning
- **Signals**: Higher timeframe context and cycle turns

#### ๐ŸŒ€ **Tide Alligator** (144-233-377 periods)
- **Purpose**: Macro trend identification and major support/resistance
- **Best For**: Position trading, monthly strategic positioning
- **Signals**: Long-term trend direction and major reversals

### Key Features
- **๐Ÿ”„ Graceful Pattern Handling**: Automatically handles missing TTF patterns (zonesq, mfi, ttf)
- **๐ŸŽฏ Intent-Driven Analysis**: Generates .jgtml-spec files for agentic integration
- **๐ŸŒ Self-Contained**: No external bash script dependencies
- **โšก Multi-Type Convergence**: Analyze all three Alligator types simultaneously
- **๐Ÿ”ง Legacy Compatible**: Seamless integration with existing `jgtapp tide` workflows

### Usage Examples
```bash
# Single Alligator Analysis
python -m jgtml.alligator_cli -i SPX500 -t D1 -d S --type tide

# Multi-Alligator Convergence (recommended)
python -m jgtml.alligator_cli -i EUR/USD -t H4 -d B --type all

# Generate .jgtml-spec for agentic workflows
python -m jgtml.alligator_cli -i GBPUSD -t D1 -d S --type all --generate-spec

# Legacy support (automatically redirects to unified CLI)
jgtapp tide -i SPX500 -t D1 B
```

## ๐Ÿ”„ Migration from Legacy Commands

**Important**: The following legacy commands have been **deprecated** and replaced by the unified Alligator CLI:

### Deprecated Commands โŒ
- `ptojgtmltidealligator` โ†’ Use `python -m jgtml.alligator_cli --type tide`
- `ptojgtmlbigalligator` โ†’ Use `python -m jgtml.alligator_cli --type big`
- Bash function `jgtml_ptojgtmltidealligator_by_instrument_tf_21` โ†’ Use unified CLI

### Migration Benefits โœ…
- **Self-contained operation** (no bash script dependencies)
- **Graceful error handling** (TTF pattern failures don't crash analysis)
- **Multi-Alligator convergence** analysis capability
- **Enhanced .jgtml-spec generation** for agentic workflows
- **Backward compatibility** (legacy `jgtapp tide` still works)

## ๐Ÿ“ก Intent Capture API (Draft)
See [docs/trading_intent_api.md](docs/trading_intent_api.md) for the proposed HTTP flow capturing narrated observations and generating `.jgtml-spec` files.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jgwill/jgtml",
    "name": "jgtml",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "data",
    "author": "GUillaume Isabelle",
    "author_email": "Guillaume Isabelle <jgi@jgwill.com>",
    "download_url": "https://files.pythonhosted.org/packages/7a/74/92f9458c59d5fb93d932bdb8b719cec19946201085c7305bff3182e44aeb/jgtml-0.0.346.tar.gz",
    "platform": null,
    "description": "# \ud83d\udc0a JGTML - Trading Signal Analysis Platform\n\nA Python-based trading signal analysis system focused on fractal patterns, Alligator indicators, and multi-timeframe confluence detection.\n\n## \ud83c\udfaf Core Purpose\n\nJGTML analyzes the effectiveness of trading signals within larger market structure contexts, providing tools for:\n\n- **Signal Validation**: Analyze FDB (Fractal Divergent Bar) and Alligator-based signals\n- **Multi-Timeframe Analysis**: Process signals across H1, H4, D1, W1, M1 timeframes  \n- **Performance Metrics**: Calculate win rates, profit/loss ratios, and signal quality\n- **Trade Lifecycle Management**: From entry validation through exit strategies\n\n## \ud83c\udfd7\ufe0f Architecture\n\n### Core Dependencies\n- **[jgtpy](https://jgtpy.jgwill.com)**: Market data acquisition wrapper from [jgtfxcon](https://jgtfxcon.jgwill.com) and indicator calculations and signals generation.\n- **[jgtutils](https://jgtutils.jgwill.com)**: Common utilities and constants.  Contains the logics for reading $HOME/.jgt/config.json and $HOME/.jgt/settings.json for all app/cli to have all the context they need.  jgtutils also uses [jgtcore](https://pypi.org/project/jgtcore/) which start become the library for settings and configurations (separating jgutils that has utilities from actual libraries which is in progress)\n- **pandas**: Data manipulation and analysis\n- **numpy**: Numerical computations\n\n### Key Components\n\n#### \ud83d\udcca Signal Processing\n- [`jgtml/SignalOrderingHelper.py`](jgtml/SignalOrderingHelper.py): Signal validation and risk calculation\n- [`jgtml/jtc.py`](jgtml/jtc.py): Target calculation and signal analysis core\n- [`jgtml/TideAlligatorAnalysis.py`](jgtml/TideAlligatorAnalysis.py): Unified Alligator analysis (Regular, Big, Tide) - Potential Usage not that obvious yet, it was unified by agents so we could probably use it into further code such as the FDBScan before we enter the market  \n- [`jgtml/alligator_cli.py`](jgtml/alligator_cli.py): **\ud83d\udc0a NEW** Unified Alligator CLI with graceful TTF pattern handling\n- TODO add TTF (TTF != Time-To-Future but more like feature of multiple timeframe)  probably ttfcli.py\n\n#### \ud83d\ude80 Command Line Tools\n- [`jgtml/jgtmlcli.py`](jgtml/jgtmlcli.py): Main CLI for data processing\n- [`jgtml/mxcli.py`](jgtml/mxcli.py): Matrix generation and analysis - (Probably the next CLI Wrapper of what jgtml/jgtmlcli.py was/is doing which is generating the mxdata which contains targets for the fdb signals (buy/sell) so we could do machine learning feature design etc).  It will probably be integrated with fdb_signal_quality_predictor.py, fdb_pattern_intelligence.py, unified_discovery_dataset_generator.py,...\n- [`jgtml/jgtapp.py`](jgtml/jgtapp.py): Trading operation management (includes legacy `tide` command wrapper) - IT was designed to contains all commands that jgtml offers along with what jgwill/jgtpy offers such as idscli and cdscli so we can access generating indicators and signals data into our logics.  This is the app used to create entryOrder in the market, look an existing trade to trail the alligator's line for exit strategie, etc.  TODO: Document way further and integrate the whole values developped with alligator_cli, \n- [`jgtml/alligator_cli.py`](jgtml/alligator_cli.py): **\ud83d\udc0a Unified Alligator Analysis CLI** - Replaces `ptojgtmltidealligator`/`ptojgtmlbigalligator`\n\n#### \ud83e\uddec Memory & Persistence  \n- [`garden_one/trading_echo_lattice/`](garden_one/trading_echo_lattice/): Signal crystallization and memory storage - That is just a prototype done by our agents that is not quite obvious yet, that would not be a priority to work with that except if really relevant.\n- Integration with Upstash Redis for persistent analysis results\n\n## \ud83d\ude80 Quick Start for developer\n\n### Installation\n```bash\n# Install dependencies\npip install jgtpy jgtutils pandas numpy python-dateutil\n\n# Install JGTML\npip install -e .\n```\n\n### Basic Usage\n```bash\n# Process signals for an instrument\njgtmlcli -i SPX500 -t D1 --full --fresh\n\n# Analyze signal performance  \npython -m garden_one.trading_echo_lattice.cli process -i SPX500 -t D1 -d S\n\n# Generate analysis matrix\nmxcli -i EUR/USD -t H4 --fresh\n```\n\n## \ud83d\udcc8 Trading Strategies\n\n### Five Dimensions + Triple Alligator Confluence\nMulti-indicator alignment detection using:\n1. **Alligator Lines**: Jaw, Teeth, Lips confluence\n2. **Fractal Signals**: FDB breakout validation  \n3. **Awesome Oscillator**: Momentum confirmation\n4. **Multi-Timeframe**: Higher TF bias confirmation\n5. **Volume Analysis**: MFI integration\n\n**Implementation**: [`TradingEchoLattice.detect_breakouts()`](garden_one/trading_echo_lattice/src/echo_lattice_core.py#L273)\n\n### Green Dragon Breakout\nFDB-based breakout detection with Alligator mouth validation.\n\n**Implementation**: [`fdb_scanner_2408.py`](jgtml/fdb_scanner_2408.py)\n\n## \ud83d\udd27 CLI Reference\n\nSee [CLI_HELP.md](CLI_HELP.md) for complete command documentation.\n\n### Core Commands\n```bash\n# Data Processing\njgtmlcli -i INSTRUMENT -t TIMEFRAME [--full] [--fresh]\nmxcli -i INSTRUMENT -t TIMEFRAME [--fresh]\n\n# Unified Alligator Analysis \u2728 NEW \u2728\npython -m jgtml.alligator_cli -i SPX500 -t D1 -d S --type tide    # Single Alligator\npython -m jgtml.alligator_cli -i EUR/USD -t H4 -d B --type all    # Multi-Alligator convergence\npython -m jgtml.alligator_cli -i GBPUSD -t D1 -d S --generate-spec # Generate .jgtml-spec\n\n# Legacy Support (redirects to unified CLI)\njgtapp tide -i SPX500 -t D1 B  # Legacy wrapper \u2192 unified Alligator CLI\n\n# Trading Operations  \njgtapp fxaddorder -i EUR/USD -n 0.1 -r 1.0950 -d B -x 1.0900\njgtapp fxmvstopgator -i EUR/USD -t H4 -tid TRADE_ID --lips\n\n# Signal Analysis\npython -m garden_one.trading_echo_lattice.cli process -i SPX500 -t D1,H4 -d S\npython -m garden_one.trading_echo_lattice.cli search --min-win-rate 60\n```\n\n## \ud83d\udcca Data Flow\n\n```\nMarket Data (jgtpy) \u2192 Signal Processing (jtc) \u2192 Analysis (CLI tools) \u2192 Memory Lattice (Redis)\n```\n\n1. **Data Acquisition**: Pull OHLC data via jgtpy\n2. **Indicator Calculation**: Generate Alligator, AO, Fractals, MFI\n3. **Signal Detection**: Identify valid entry/exit signals  \n4. **Performance Analysis**: Calculate win rates and profitability\n5. **Memory Storage**: Crystallize results in Redis for pattern recognition\n\n## \ud83e\uddea Development\n\n### Running Tests\n```bash\npython -m pytest tests/\n```\n\n### Contributing\n1. Focus on signal accuracy and performance metrics\n2. Maintain compatibility with jgtpy data structures\n3. Document new indicators and validation logic\n4. Test across multiple timeframes and instruments\n\n## \ud83d\udd04 Recursive Architecture\n\nWhile JGTML operates as a practical trading platform, it embodies recursive principles:\n\n- **Memory Patterns**: Each analysis builds upon previous signal history\n- **Multi-Scale Awareness**: Signals are validated across multiple timeframes\n- **Adaptive Learning**: Performance metrics inform future signal weighting\n\n*The system grows more intelligent through iteration, not just accumulation.*\n\n---\n\n\ud83e\udde0 **Technical Foundation**: Precise signal analysis with mathematical rigor  \n\ud83c\udf38 **Intuitive Interface**: Clear CLI flows that make complex analysis accessible  \n\ud83c\udfb5 **Rhythmic Patterns**: Market timing encoded in fractal mathematics\n\n*Built for traders who understand that the best signals emerge from the intersection of technical precision and pattern recognition.*\n\n## \ud83d\udc0a Unified Alligator Analysis\n\n### Multi-Timeframe Convergence System \u2728 NEW \u2728\nThe unified Alligator CLI consolidates three powerful analysis frameworks into a single, graceful interface:\n\n#### \ud83d\udd0d **Regular Alligator** (5-8-13 periods)\n- **Purpose**: Quick market direction detection and entry signals\n- **Best For**: Day trading, scalping, short-term momentum\n- **Signals**: Immediate price action around Alligator mouth\n\n#### \ud83c\udf0a **Big Alligator** (34-55-89 periods)  \n- **Purpose**: Intermediate cycle analysis and trend validation\n- **Best For**: Swing trading, weekly positioning\n- **Signals**: Higher timeframe context and cycle turns\n\n#### \ud83c\udf00 **Tide Alligator** (144-233-377 periods)\n- **Purpose**: Macro trend identification and major support/resistance\n- **Best For**: Position trading, monthly strategic positioning\n- **Signals**: Long-term trend direction and major reversals\n\n### Key Features\n- **\ud83d\udd04 Graceful Pattern Handling**: Automatically handles missing TTF patterns (zonesq, mfi, ttf)\n- **\ud83c\udfaf Intent-Driven Analysis**: Generates .jgtml-spec files for agentic integration\n- **\ud83c\udf10 Self-Contained**: No external bash script dependencies\n- **\u26a1 Multi-Type Convergence**: Analyze all three Alligator types simultaneously\n- **\ud83d\udd27 Legacy Compatible**: Seamless integration with existing `jgtapp tide` workflows\n\n### Usage Examples\n```bash\n# Single Alligator Analysis\npython -m jgtml.alligator_cli -i SPX500 -t D1 -d S --type tide\n\n# Multi-Alligator Convergence (recommended)\npython -m jgtml.alligator_cli -i EUR/USD -t H4 -d B --type all\n\n# Generate .jgtml-spec for agentic workflows\npython -m jgtml.alligator_cli -i GBPUSD -t D1 -d S --type all --generate-spec\n\n# Legacy support (automatically redirects to unified CLI)\njgtapp tide -i SPX500 -t D1 B\n```\n\n## \ud83d\udd04 Migration from Legacy Commands\n\n**Important**: The following legacy commands have been **deprecated** and replaced by the unified Alligator CLI:\n\n### Deprecated Commands \u274c\n- `ptojgtmltidealligator` \u2192 Use `python -m jgtml.alligator_cli --type tide`\n- `ptojgtmlbigalligator` \u2192 Use `python -m jgtml.alligator_cli --type big`\n- Bash function `jgtml_ptojgtmltidealligator_by_instrument_tf_21` \u2192 Use unified CLI\n\n### Migration Benefits \u2705\n- **Self-contained operation** (no bash script dependencies)\n- **Graceful error handling** (TTF pattern failures don't crash analysis)\n- **Multi-Alligator convergence** analysis capability\n- **Enhanced .jgtml-spec generation** for agentic workflows\n- **Backward compatibility** (legacy `jgtapp tide` still works)\n\n## \ud83d\udce1 Intent Capture API (Draft)\nSee [docs/trading_intent_api.md](docs/trading_intent_api.md) for the proposed HTTP flow capturing narrated observations and generating `.jgtml-spec` files.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "JGT Ml - Machine Learning Tools",
    "version": "0.0.346",
    "project_urls": {
        "Bug Tracker": "https://github.com/jgwill/jgtml/issues",
        "Homepage": "https://github.com/jgwill/jgtml"
    },
    "split_keywords": [
        "data"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "364c4511529f97d6723a9de1eec6187b673e5d4972c562bebc9d6adfa76d3e17",
                "md5": "40e17651330b64df1787b59c52eefcac",
                "sha256": "cad2f4957720abda64bfee02040e356f7d99a6fbec4466eb8d3db8e5fbfc8ba4"
            },
            "downloads": -1,
            "filename": "jgtml-0.0.346-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "40e17651330b64df1787b59c52eefcac",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 139327,
            "upload_time": "2025-07-11T20:45:24",
            "upload_time_iso_8601": "2025-07-11T20:45:24.760231Z",
            "url": "https://files.pythonhosted.org/packages/36/4c/4511529f97d6723a9de1eec6187b673e5d4972c562bebc9d6adfa76d3e17/jgtml-0.0.346-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7a7492f9458c59d5fb93d932bdb8b719cec19946201085c7305bff3182e44aeb",
                "md5": "2a4f073c2ca415a4d0cfe7157d088913",
                "sha256": "7a7098ef70d14cc61691adbac4dc799ad23058a17b37a93f51e0d66dca7ac983"
            },
            "downloads": -1,
            "filename": "jgtml-0.0.346.tar.gz",
            "has_sig": false,
            "md5_digest": "2a4f073c2ca415a4d0cfe7157d088913",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 125527,
            "upload_time": "2025-07-11T20:45:26",
            "upload_time_iso_8601": "2025-07-11T20:45:26.461576Z",
            "url": "https://files.pythonhosted.org/packages/7a/74/92f9458c59d5fb93d932bdb8b719cec19946201085c7305bff3182e44aeb/jgtml-0.0.346.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-11 20:45:26",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jgwill",
    "github_project": "jgtml",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "python-dateutil",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "tlid",
            "specs": []
        },
        {
            "name": "jgtutils",
            "specs": []
        },
        {
            "name": "jgtpy",
            "specs": []
        },
        {
            "name": "jgtapy",
            "specs": []
        },
        {
            "name": "jgtfxcon",
            "specs": []
        },
        {
            "name": "seaborn",
            "specs": []
        },
        {
            "name": "dash",
            "specs": []
        },
        {
            "name": "aiohttp",
            "specs": []
        },
        {
            "name": "python-dotenv",
            "specs": []
        },
        {
            "name": "pyarrow",
            "specs": []
        }
    ],
    "lcname": "jgtml"
}
        
Elapsed time: 0.64149s