joyrl


Namejoyrl JSON
Version 0.6.8 PyPI version JSON
download
home_pagehttps://github.com/datawhalechina/joyrl
SummaryA Library for Deep Reinforcement Learning
upload_time2024-12-19 05:45:11
maintainerNone
docs_urlNone
authorjohnjim0816
requires_python>=3.7
licenseMIT
keywords reinforcement learning platform pytorch
VCS
bugtrack_url
requirements ray gymnasium tensorboard matplotlib seaborn dill scipy swig pygame gymnasium numpy pandas six setuptools scipy PyYAML pydantic psutil colorlog
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # JoyRL

[![PyPI](https://img.shields.io/pypi/v/joyrl)](https://pypi.org/project/joyrl/)  [![GitHub issues](https://img.shields.io/github/issues/datawhalechina/joyrl)](https://github.com/datawhalechina/joyrl/issues) [![GitHub stars](https://img.shields.io/github/stars/datawhalechina/joyrl)](https://github.com/datawhalechina/joyrl/stargazers) [![GitHub forks](https://img.shields.io/github/forks/datawhalechina/joyrl)](https://github.com/datawhalechina/joyrl/network) [![GitHub license](https://img.shields.io/github/license/datawhalechina/joyrl)](https://github.com/datawhalechina/joyrl/blob/master/LICENSE)

`JoyRL` is a parallel reinforcement learning library based on PyTorch and Ray. Unlike existing RL libraries, `JoyRL` is helping users to release the burden of implementing algorithms with tough details, unfriendly APIs, and etc. JoyRL is designed for users to train and test RL algorithms with **only hyperparameters configuration**, which is mush easier for beginners to learn and use. Also, JoyRL supports plenties of state-of-art RL algorithms including **RLHF(core of ChatGPT)**(See algorithms below). JoyRL provides a **modularized framework** for users as well to customize their own algorithms and environments. 

## Install

⚠️ Note that donot install JoyRL through any mirror image!!!

```bash
# you need to install Anaconda first
conda create -n joyrl python=3.10
conda activate joyrl
pip install -U joyrl
```

Torch install:

```bash
# CPU
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1
# CUDA 11.8
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu118
# CUDA 12.1
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
```

## Usage

### Quick Start

the following presents a demo to use joyrl. As you can see, first create a yaml file to **config hyperparameters**, then run the command as below in your terminal. That's all you need to do to train a DQN agent on CartPole-v1 environment.

```bash
joyrl --yaml ./presets/ClassControl/CartPole-v1/CartPole-v1_DQN.yaml
```
or you can run the following code in your python file. 

```python
import joyrl
if __name__ == "__main__":
    print(joyrl.__version__)
    yaml_path = "./presets/ClassControl/CartPole-v1/CartPole-v1_DQN.yaml"
    joyrl.run(yaml_path = yaml_path)
```



## Documentation

More tutorials and API documentation are hosted on [JoyRL docs](https://datawhalechina.github.io/joyrl/) or [JoyRL 中文文档](https://datawhalechina.github.io/joyrl-book/#/joyrl_docs/main).

## Algorithms

|       Name       |                          Reference                           |                    Author                     | Notes |
| :--------------: | :----------------------------------------------------------: | :-------------------------------------------: | :---: |
| Q-learning | [RL introduction](https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf) | [johnjim0816](https://github.com/johnjim0816) |       |
| Sarsa | [RL introduction](https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf) | [johnjim0816](https://github.com/johnjim0816) | |
| DQN | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [johnjim0816](https://github.com/johnjim0816) | |
| Double DQN  |     [DoubleDQN Paper](https://arxiv.org/abs/1509.06461)      | [johnjim0816](https://github.com/johnjim0816) | |
| Dueling DQN | [DuelingDQN Paper](https://arxiv.org/abs/1511.06581) | [johnjim0816](https://github.com/johnjim0816) | |
| NoisyDQN | [NoisyDQN Paper](https://arxiv.org/pdf/1706.10295.pdf) | [johnjim0816](https://github.com/johnjim0816) | |
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [johnjim0816](https://github.com/johnjim0816) | |
| TD3 | [TD3 Paper](https://arxiv.org/pdf/1802.09477) | [johnjim0816](https://github.com/johnjim0816) | |
| A2C/A3C | [A3C Paper](https://arxiv.org/abs/1602.01783) | [johnjim0816](https://github.com/johnjim0816) | |
| PPO | [PPO Paper](https://arxiv.org/abs/1707.06347) | [johnjim0816](https://github.com/johnjim0816) | |
| SoftQ | [SoftQ Paper](https://arxiv.org/abs/1702.08165) | [johnjim0816](https://github.com/johnjim0816) | |

## Why JoyRL?

| RL Platform                                                  | GitHub Stars                                                 | # of Alg. <sup>(1)</sup> | Custom Env                     | Async Training      | RNN Support        | Multi-Head Observation | Backend                                           |
| ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------ | ------------------------------ | ------------------ | ------------------ | ---------------------- | ------------------------------------------------- |
| [Baselines](https://github.com/openai/baselines)             | [![GitHub stars](https://img.shields.io/github/stars/openai/baselines)](https://github.com/openai/baselines/stargazers) | 9                        | :heavy_check_mark: (gym)       | :x:                | :heavy_check_mark: | :x:                    | TF1                                               |
| [Stable-Baselines](https://github.com/hill-a/stable-baselines) | [![GitHub stars](https://img.shields.io/github/stars/hill-a/stable-baselines)](https://github.com/hill-a/stable-baselines/stargazers) | 11                       | :heavy_check_mark: (gym)       | :x:                | :heavy_check_mark: | :x:                    | TF1                                               |
| [Stable-Baselines3](https://github.com/DLR-RM/stable-baselines3) | [![GitHub stars](https://img.shields.io/github/stars/DLR-RM/stable-baselines3)](https://github.com/DLR-RM/stable-baselines3/stargazers) | 7        | :heavy_check_mark: (gym)       | :x:                | :x:                | :heavy_check_mark:     | PyTorch                                           |
| [Ray/RLlib](https://github.com/ray-project/ray/tree/master/rllib/) | [![GitHub stars](https://img.shields.io/github/stars/ray-project/ray)](https://github.com/ray-project/ray/stargazers) | 16                       | :heavy_check_mark:             | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:     | TF/PyTorch                                        |
| [SpinningUp](https://github.com/openai/spinningup)           | [![GitHub stars](https://img.shields.io/github/stars/openai/spinningup)](https://github.com/openai/spinningupstargazers) | 6                        | :heavy_check_mark: (gym)       | :x:                | :x:                | :x:                    | PyTorch                                           |
| [Dopamine](https://github.com/google/dopamine)               | [![GitHub stars](https://img.shields.io/github/stars/google/dopamine)](https://github.com/google/dopamine/stargazers) | 7                        | :x:                            | :x:                | :x:                | :x:                    | TF/JAX                                            |
| [ACME](https://github.com/deepmind/acme)                     | [![GitHub stars](https://img.shields.io/github/stars/deepmind/acme)](https://github.com/deepmind/acme/stargazers) | 14                       | :heavy_check_mark: (dm_env)    | :x:                | :heavy_check_mark: | :heavy_check_mark:     | TF/JAX                                            |
| [keras-rl](https://github.com/keras-rl/keras-rl)             | [![GitHub stars](https://img.shields.io/github/stars/keras-rl/keras-rl)](https://github.com/keras-rl/keras-rlstargazers) | 7                        | :heavy_check_mark: (gym)       | :x:                | :x:                | :x:                    | Keras                                             |
| [cleanrl](https://github.com/vwxyzjn/cleanrl)                | ![GitHub stars](https://img.shields.io/github/stars/vwxyzjn/cleanrl) | 9                        | :heavy_check_mark: (gym)       | :x:                | :x:                | :x:                    | [poetry](https://github.com/python-poetry/poetry) |
| [rlpyt](https://github.com/astooke/rlpyt)                    | [![GitHub stars](https://img.shields.io/github/stars/astooke/rlpyt)](https://github.com/astooke/rlpyt/stargazers) | 11                       | :x:                            | :x:                | :heavy_check_mark: | :heavy_check_mark:     | PyTorch                                           |
| [ChainerRL](https://github.com/chainer/chainerrl)            | [![GitHub stars](https://img.shields.io/github/stars/chainer/chainerrl)](https://github.com/chainer/chainerrl/stargazers) | 18                       | :heavy_check_mark: (gym)       | :x:                | :heavy_check_mark: | :x:                    | Chainer                                           |
| [Tianshou](https://github.com/thu-ml/tianshou)               | [![GitHub stars](https://img.shields.io/github/stars/thu-ml/tianshou)](https://github.com/thu-ml/tianshou/stargazers) | 20                       | :heavy_check_mark: (Gymnasium) | :x:                | :heavy_check_mark: | :heavy_check_mark:     | PyTorch                                           |
| [JoyRL](https://github.com/datawhalechina/joyrl)             | ![GitHub stars](https://img.shields.io/github/stars/datawhalechina/joyrl) | 11                     | :heavy_check_mark: (Gymnasium) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:     | PyTorch                                           |

Here are some other highlghts of JoyRL:

* Provide a series of Chinese courses [JoyRL Book](https://github.com/datawhalechina/joyrl-book) (with the English version in progress), suitable for beginners to start with a combination of theory

## Contributors

<table border="0">
  <tbody>
    <tr align="center" >
        <td>
         <a href="https://github.com/JohnJim0816"><img width="70" height="70" src="https://github.com/JohnJim0816.png?s=40" alt="pic"></a><br>
         <a href="https://github.com/JohnJim0816">John Jim</a>
         <p>Peking University</p>
        </td>
        <td>
            <a href="https://github.com/qiwang067"><img width="70" height="70" src="https://github.com/qiwang067.png?s=40" alt="pic"></a><br>
            <a href="https://github.com/qiwang067">Qi Wang</a> 
            <p>Shanghai Jiao Tong University</p>
        </td>
        <td>
            <a href="https://github.com/yyysjz1997"><img width="70" height="70" src="https://github.com/yyysjz1997.png?s=40" alt="pic"></a><br>
            <a href="https://github.com/yyysjz1997">Yiyuan Yang</a> 
            <p>University of Oxford</p>
        </td>
    </tr>
  </tbody>
</table>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/datawhalechina/joyrl",
    "name": "joyrl",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "reinforcement learning platform pytorch",
    "author": "johnjim0816",
    "author_email": "johnjim0816@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ba/6c/6db9da741fd78b5fee299199caeb12cbc2229391d02b23cacfdf32d56947/joyrl-0.6.8.tar.gz",
    "platform": "any",
    "description": "# JoyRL\n\n[![PyPI](https://img.shields.io/pypi/v/joyrl)](https://pypi.org/project/joyrl/)  [![GitHub issues](https://img.shields.io/github/issues/datawhalechina/joyrl)](https://github.com/datawhalechina/joyrl/issues) [![GitHub stars](https://img.shields.io/github/stars/datawhalechina/joyrl)](https://github.com/datawhalechina/joyrl/stargazers) [![GitHub forks](https://img.shields.io/github/forks/datawhalechina/joyrl)](https://github.com/datawhalechina/joyrl/network) [![GitHub license](https://img.shields.io/github/license/datawhalechina/joyrl)](https://github.com/datawhalechina/joyrl/blob/master/LICENSE)\n\n`JoyRL` is a parallel reinforcement learning library based on PyTorch and Ray. Unlike existing RL libraries, `JoyRL` is helping users to release the burden of implementing algorithms with tough details, unfriendly APIs, and etc. JoyRL is designed for users to train and test RL algorithms with **only hyperparameters configuration**, which is mush easier for beginners to learn and use. Also, JoyRL supports plenties of state-of-art RL algorithms including **RLHF(core of ChatGPT)**(See algorithms below). JoyRL provides a **modularized framework** for users as well to customize their own algorithms and environments. \n\n## Install\n\n\u26a0\ufe0f Note that donot install JoyRL through any mirror image!!!\n\n```bash\n# you need to install Anaconda first\nconda create -n joyrl python=3.10\nconda activate joyrl\npip install -U joyrl\n```\n\nTorch install:\n\n```bash\n# CPU\npip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1\n# CUDA 11.8\npip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu118\n# CUDA 12.1\npip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121\n```\n\n## Usage\n\n### Quick Start\n\nthe following presents a demo to use joyrl. As you can see, first create a yaml file to **config hyperparameters**, then run the command as below in your terminal. That's all you need to do to train a DQN agent on CartPole-v1 environment.\n\n```bash\njoyrl --yaml ./presets/ClassControl/CartPole-v1/CartPole-v1_DQN.yaml\n```\nor you can run the following code in your python file. \n\n```python\nimport joyrl\nif __name__ == \"__main__\":\n    print(joyrl.__version__)\n    yaml_path = \"./presets/ClassControl/CartPole-v1/CartPole-v1_DQN.yaml\"\n    joyrl.run(yaml_path = yaml_path)\n```\n\n\n\n## Documentation\n\nMore tutorials and API documentation are hosted on [JoyRL docs](https://datawhalechina.github.io/joyrl/) or [JoyRL \u4e2d\u6587\u6587\u6863](https://datawhalechina.github.io/joyrl-book/#/joyrl_docs/main).\n\n## Algorithms\n\n|       Name       |                          Reference                           |                    Author                     | Notes |\n| :--------------: | :----------------------------------------------------------: | :-------------------------------------------: | :---: |\n| Q-learning | [RL introduction](https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf) | [johnjim0816](https://github.com/johnjim0816) |       |\n| Sarsa | [RL introduction](https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf) | [johnjim0816](https://github.com/johnjim0816) | |\n| DQN | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [johnjim0816](https://github.com/johnjim0816) | |\n| Double DQN  |     [DoubleDQN Paper](https://arxiv.org/abs/1509.06461)      | [johnjim0816](https://github.com/johnjim0816) | |\n| Dueling DQN | [DuelingDQN Paper](https://arxiv.org/abs/1511.06581) | [johnjim0816](https://github.com/johnjim0816) | |\n| NoisyDQN | [NoisyDQN Paper](https://arxiv.org/pdf/1706.10295.pdf) | [johnjim0816](https://github.com/johnjim0816) | |\n| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [johnjim0816](https://github.com/johnjim0816) | |\n| TD3 | [TD3 Paper](https://arxiv.org/pdf/1802.09477) | [johnjim0816](https://github.com/johnjim0816) | |\n| A2C/A3C | [A3C Paper](https://arxiv.org/abs/1602.01783) | [johnjim0816](https://github.com/johnjim0816) | |\n| PPO | [PPO Paper](https://arxiv.org/abs/1707.06347) | [johnjim0816](https://github.com/johnjim0816) | |\n| SoftQ | [SoftQ Paper](https://arxiv.org/abs/1702.08165) | [johnjim0816](https://github.com/johnjim0816) | |\n\n## Why JoyRL?\n\n| RL Platform                                                  | GitHub Stars                                                 | # of Alg. <sup>(1)</sup> | Custom Env                     | Async Training      | RNN Support        | Multi-Head Observation | Backend                                           |\n| ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------ | ------------------------------ | ------------------ | ------------------ | ---------------------- | ------------------------------------------------- |\n| [Baselines](https://github.com/openai/baselines)             | [![GitHub stars](https://img.shields.io/github/stars/openai/baselines)](https://github.com/openai/baselines/stargazers) | 9                        | :heavy_check_mark: (gym)       | :x:                | :heavy_check_mark: | :x:                    | TF1                                               |\n| [Stable-Baselines](https://github.com/hill-a/stable-baselines) | [![GitHub stars](https://img.shields.io/github/stars/hill-a/stable-baselines)](https://github.com/hill-a/stable-baselines/stargazers) | 11                       | :heavy_check_mark: (gym)       | :x:                | :heavy_check_mark: | :x:                    | TF1                                               |\n| [Stable-Baselines3](https://github.com/DLR-RM/stable-baselines3) | [![GitHub stars](https://img.shields.io/github/stars/DLR-RM/stable-baselines3)](https://github.com/DLR-RM/stable-baselines3/stargazers) | 7        | :heavy_check_mark: (gym)       | :x:                | :x:                | :heavy_check_mark:     | PyTorch                                           |\n| [Ray/RLlib](https://github.com/ray-project/ray/tree/master/rllib/) | [![GitHub stars](https://img.shields.io/github/stars/ray-project/ray)](https://github.com/ray-project/ray/stargazers) | 16                       | :heavy_check_mark:             | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:     | TF/PyTorch                                        |\n| [SpinningUp](https://github.com/openai/spinningup)           | [![GitHub stars](https://img.shields.io/github/stars/openai/spinningup)](https://github.com/openai/spinningupstargazers) | 6                        | :heavy_check_mark: (gym)       | :x:                | :x:                | :x:                    | PyTorch                                           |\n| [Dopamine](https://github.com/google/dopamine)               | [![GitHub stars](https://img.shields.io/github/stars/google/dopamine)](https://github.com/google/dopamine/stargazers) | 7                        | :x:                            | :x:                | :x:                | :x:                    | TF/JAX                                            |\n| [ACME](https://github.com/deepmind/acme)                     | [![GitHub stars](https://img.shields.io/github/stars/deepmind/acme)](https://github.com/deepmind/acme/stargazers) | 14                       | :heavy_check_mark: (dm_env)    | :x:                | :heavy_check_mark: | :heavy_check_mark:     | TF/JAX                                            |\n| [keras-rl](https://github.com/keras-rl/keras-rl)             | [![GitHub stars](https://img.shields.io/github/stars/keras-rl/keras-rl)](https://github.com/keras-rl/keras-rlstargazers) | 7                        | :heavy_check_mark: (gym)       | :x:                | :x:                | :x:                    | Keras                                             |\n| [cleanrl](https://github.com/vwxyzjn/cleanrl)                | ![GitHub stars](https://img.shields.io/github/stars/vwxyzjn/cleanrl) | 9                        | :heavy_check_mark: (gym)       | :x:                | :x:                | :x:                    | [poetry](https://github.com/python-poetry/poetry) |\n| [rlpyt](https://github.com/astooke/rlpyt)                    | [![GitHub stars](https://img.shields.io/github/stars/astooke/rlpyt)](https://github.com/astooke/rlpyt/stargazers) | 11                       | :x:                            | :x:                | :heavy_check_mark: | :heavy_check_mark:     | PyTorch                                           |\n| [ChainerRL](https://github.com/chainer/chainerrl)            | [![GitHub stars](https://img.shields.io/github/stars/chainer/chainerrl)](https://github.com/chainer/chainerrl/stargazers) | 18                       | :heavy_check_mark: (gym)       | :x:                | :heavy_check_mark: | :x:                    | Chainer                                           |\n| [Tianshou](https://github.com/thu-ml/tianshou)               | [![GitHub stars](https://img.shields.io/github/stars/thu-ml/tianshou)](https://github.com/thu-ml/tianshou/stargazers) | 20                       | :heavy_check_mark: (Gymnasium) | :x:                | :heavy_check_mark: | :heavy_check_mark:     | PyTorch                                           |\n| [JoyRL](https://github.com/datawhalechina/joyrl)             | ![GitHub stars](https://img.shields.io/github/stars/datawhalechina/joyrl) | 11                     | :heavy_check_mark: (Gymnasium) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:     | PyTorch                                           |\n\nHere are some other highlghts of JoyRL:\n\n* Provide a series of Chinese courses [JoyRL Book](https://github.com/datawhalechina/joyrl-book) (with the English version in progress), suitable for beginners to start with a combination of theory\n\n## Contributors\n\n<table border=\"0\">\n  <tbody>\n    <tr align=\"center\" >\n        <td>\n         <a href=\"https://github.com/JohnJim0816\"><img width=\"70\" height=\"70\" src=\"https://github.com/JohnJim0816.png?s=40\" alt=\"pic\"></a><br>\n         <a href=\"https://github.com/JohnJim0816\">John Jim</a>\n         <p>Peking University</p>\n        </td>\n        <td>\n            <a href=\"https://github.com/qiwang067\"><img width=\"70\" height=\"70\" src=\"https://github.com/qiwang067.png?s=40\" alt=\"pic\"></a><br>\n            <a href=\"https://github.com/qiwang067\">Qi Wang</a> \n            <p>Shanghai Jiao Tong University</p>\n        </td>\n        <td>\n            <a href=\"https://github.com/yyysjz1997\"><img width=\"70\" height=\"70\" src=\"https://github.com/yyysjz1997.png?s=40\" alt=\"pic\"></a><br>\n            <a href=\"https://github.com/yyysjz1997\">Yiyuan Yang</a> \n            <p>University of Oxford</p>\n        </td>\n    </tr>\n  </tbody>\n</table>\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Library for Deep Reinforcement Learning",
    "version": "0.6.8",
    "project_urls": {
        "Homepage": "https://github.com/datawhalechina/joyrl"
    },
    "split_keywords": [
        "reinforcement",
        "learning",
        "platform",
        "pytorch"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "02f21b6bb45e32e6ecfc73bdb8b78c3066989e78810050bfae4e503c1f3de8e3",
                "md5": "e77b26d3bf121dd60493395a1863d8ea",
                "sha256": "234f02e300e16b73eb42c384fbcbad8024c5d3268dd85ae1a76e166d33988cf7"
            },
            "downloads": -1,
            "filename": "joyrl-0.6.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e77b26d3bf121dd60493395a1863d8ea",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 108454,
            "upload_time": "2024-12-19T05:45:08",
            "upload_time_iso_8601": "2024-12-19T05:45:08.240609Z",
            "url": "https://files.pythonhosted.org/packages/02/f2/1b6bb45e32e6ecfc73bdb8b78c3066989e78810050bfae4e503c1f3de8e3/joyrl-0.6.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ba6c6db9da741fd78b5fee299199caeb12cbc2229391d02b23cacfdf32d56947",
                "md5": "b8a6ca9f66b80e42e7904139269b33e2",
                "sha256": "20d338cc0fddd4fe4f2db7cc62c676be5cd58f67ef81ea4ed7dcc2a81b8dcace"
            },
            "downloads": -1,
            "filename": "joyrl-0.6.8.tar.gz",
            "has_sig": false,
            "md5_digest": "b8a6ca9f66b80e42e7904139269b33e2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 79156,
            "upload_time": "2024-12-19T05:45:11",
            "upload_time_iso_8601": "2024-12-19T05:45:11.001586Z",
            "url": "https://files.pythonhosted.org/packages/ba/6c/6db9da741fd78b5fee299199caeb12cbc2229391d02b23cacfdf32d56947/joyrl-0.6.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-19 05:45:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "datawhalechina",
    "github_project": "joyrl",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "ray",
            "specs": [
                [
                    "==",
                    "2.6.3"
                ]
            ]
        },
        {
            "name": "gymnasium",
            "specs": [
                [
                    "==",
                    "0.29.1"
                ]
            ]
        },
        {
            "name": "tensorboard",
            "specs": [
                [
                    "==",
                    "2.16.2"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "3.8.4"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    "==",
                    "0.13.2"
                ]
            ]
        },
        {
            "name": "dill",
            "specs": [
                [
                    "==",
                    "0.3.8"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.13.0"
                ]
            ]
        },
        {
            "name": "swig",
            "specs": [
                [
                    "==",
                    "4.2.1"
                ]
            ]
        },
        {
            "name": "pygame",
            "specs": [
                [
                    "==",
                    "2.6.0"
                ]
            ]
        },
        {
            "name": "gymnasium",
            "specs": [
                [
                    "==",
                    "0.29.1"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.26.4"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "2.2.2"
                ]
            ]
        },
        {
            "name": "six",
            "specs": [
                [
                    "==",
                    "1.16.0"
                ]
            ]
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    "==",
                    "69.5.1"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.13.0"
                ]
            ]
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    "==",
                    "6.0.1"
                ]
            ]
        },
        {
            "name": "pydantic",
            "specs": [
                [
                    "==",
                    "1.10.17"
                ]
            ]
        },
        {
            "name": "psutil",
            "specs": [
                [
                    "==",
                    "6.0.0"
                ]
            ]
        },
        {
            "name": "colorlog",
            "specs": [
                [
                    "==",
                    "6.8.2"
                ]
            ]
        }
    ],
    "lcname": "joyrl"
}
        
Elapsed time: 0.39976s