lca-algebraic


Namelca-algebraic JSON
Version 1.1.2 PyPI version JSON
download
home_pagehttps://github.com/oie-mines-paristech/lca_algebraic/
SummaryThis library provides a layer above brightway2 for defining parametric models and running super fast LCA for monte carlo analysis.
upload_time2024-06-26 14:20:11
maintainerNone
docs_urlNone
authorOIE - Mines ParisTech
requires_pythonNone
licenseBSD
keywords lca brightway2 monte-carlo parametric
VCS
bugtrack_url
requirements tabulate ipywidgets pandas seaborn sympy nbformat nbconvert numpy matplotlib scipy brightway2 ipython SALib tqdm python-dotenv pypardiso pyarrow
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Introduction

This library is a layer above [**brightway2**](https://brightway.dev/) designed for the definition of **parametric inventories** 
with fast computation of LCA impacts, suitable for **monte-carlo** / global sensitivity analysis 

It integrates the magic of [Sympy](https://www.sympy.org/en/index.html) in order to write parametric formulas as regular Python expressions.

**lca-algebraic** provides a set of **helper functions** for : 
* **compact** & **human readable** definition of activities :  
    * search background (tech and biosphere) activities 
    * create new foreground activities with parametrized amounts
    * parametrize / update existing background activities (extending the class **Activity**)
* Definition of parameters
* Fast computation of LCAs
* Computation of monte carlo method and global sensitivity analysis (Sobol indices) 

# Installation

We don't provide conda package anymore.

This packages is available via [pip /pypi](https://pypi.org/project/lca-algebraic/)

## 1) Setup separate environement

First create a python environment, with **Python** [>=3.9] :

**With Conda (or [mamba](https://mamba.readthedocs.io/en/latest/index.html))**

```bash
conda create -n lca python==3.10
conda activate lca
```

**With virtual env**

```bash
python3.10 -m venv .venv
source .venv/bin/activate
```

## 2) Install lca_algebraic

> pip install lca_algebraic 

## 3) [Optional] Install Jupyter & Activity Browser 

You may also install Jupyter and [Activity Browser](https://github.com/LCA-ActivityBrowser/activity-browser) on the same 
environment.

**Jupyter** :
> pip  install jupyter

**Activity Browser** can only be installed via conda/mamba. Note that it can also be installed on a separate Python env and will 
still be able to access and browse the projects created programmatically with *lca_algebraic* / *Brightway*.  
> conda install activity-browser


# Licence & Copyright

This library has been developed by [OIE - MinesParistech](http://www.oie.mines-paristech.fr), for the project [*INCER-ACV*](https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4448-incer-acv.html), 
lead by [ADEME](https://www.ademe.fr/). 

It is distributed under the [BSD License](./LICENSE)

# Mailing list

Please register to this dedicated mailing list to discuss the evolutions of this library and be informed of future releases :

[lca_algebraic@groupes.mines-paristech.fr](https://groupes.minesparis.psl.eu/wws/subscribe/lca_algebraic)


# Documentation

Full documentation and example notebooks are [hosted on **readthedocs**](https://lca-algebraic.readthedocs.io/)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/oie-mines-paristech/lca_algebraic/",
    "name": "lca-algebraic",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "LCA brightway2 monte-carlo parametric",
    "author": "OIE - Mines ParisTech",
    "author_email": "raphael.jolivet@mines-paristech.fr",
    "download_url": "https://files.pythonhosted.org/packages/84/dc/68d60c7b78452b556dc2f465d302e7d37dad2f6bb4aa15bd63f8992bb794/lca_algebraic-1.1.2.tar.gz",
    "platform": null,
    "description": "# Introduction\n\nThis library is a layer above [**brightway2**](https://brightway.dev/) designed for the definition of **parametric inventories** \nwith fast computation of LCA impacts, suitable for **monte-carlo** / global sensitivity analysis \n\nIt integrates the magic of [Sympy](https://www.sympy.org/en/index.html) in order to write parametric formulas as regular Python expressions.\n\n**lca-algebraic** provides a set of **helper functions** for : \n* **compact** & **human readable** definition of activities :  \n    * search background (tech and biosphere) activities \n    * create new foreground activities with parametrized amounts\n    * parametrize / update existing background activities (extending the class **Activity**)\n* Definition of parameters\n* Fast computation of LCAs\n* Computation of monte carlo method and global sensitivity analysis (Sobol indices) \n\n# Installation\n\nWe don't provide conda package anymore.\n\nThis packages is available via [pip /pypi](https://pypi.org/project/lca-algebraic/)\n\n## 1) Setup separate environement\n\nFirst create a python environment, with **Python** [>=3.9] :\n\n**With Conda (or [mamba](https://mamba.readthedocs.io/en/latest/index.html))**\n\n```bash\nconda create -n lca python==3.10\nconda activate lca\n```\n\n**With virtual env**\n\n```bash\npython3.10 -m venv .venv\nsource .venv/bin/activate\n```\n\n## 2) Install lca_algebraic\n\n> pip install lca_algebraic \n\n## 3) [Optional] Install Jupyter & Activity Browser \n\nYou may also install Jupyter and [Activity Browser](https://github.com/LCA-ActivityBrowser/activity-browser) on the same \nenvironment.\n\n**Jupyter** :\n> pip  install jupyter\n\n**Activity Browser** can only be installed via conda/mamba. Note that it can also be installed on a separate Python env and will \nstill be able to access and browse the projects created programmatically with *lca_algebraic* / *Brightway*.  \n> conda install activity-browser\n\n\n# Licence & Copyright\n\nThis library has been developed by [OIE - MinesParistech](http://www.oie.mines-paristech.fr), for the project [*INCER-ACV*](https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4448-incer-acv.html), \nlead by [ADEME](https://www.ademe.fr/). \n\nIt is distributed under the [BSD License](./LICENSE)\n\n# Mailing list\n\nPlease register to this dedicated mailing list to discuss the evolutions of this library and be informed of future releases :\n\n[lca_algebraic@groupes.mines-paristech.fr](https://groupes.minesparis.psl.eu/wws/subscribe/lca_algebraic)\n\n\n# Documentation\n\nFull documentation and example notebooks are [hosted on **readthedocs**](https://lca-algebraic.readthedocs.io/)\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "This library provides a layer above brightway2 for defining parametric models and running super fast LCA for monte carlo analysis.",
    "version": "1.1.2",
    "project_urls": {
        "Homepage": "https://github.com/oie-mines-paristech/lca_algebraic/"
    },
    "split_keywords": [
        "lca",
        "brightway2",
        "monte-carlo",
        "parametric"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c56b686f047a27b89f9db6256699f09f8fe65a74f4334d5c917b15898441ee10",
                "md5": "c4638ab9f031cbb194b4e8edf84c9282",
                "sha256": "6c2b61c00c66ea91810b952570ffbbfc3adeac918c98ed996209f26ed9a2cd20"
            },
            "downloads": -1,
            "filename": "lca_algebraic-1.1.2-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c4638ab9f031cbb194b4e8edf84c9282",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 72149,
            "upload_time": "2024-06-26T14:20:08",
            "upload_time_iso_8601": "2024-06-26T14:20:08.862519Z",
            "url": "https://files.pythonhosted.org/packages/c5/6b/686f047a27b89f9db6256699f09f8fe65a74f4334d5c917b15898441ee10/lca_algebraic-1.1.2-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "84dc68d60c7b78452b556dc2f465d302e7d37dad2f6bb4aa15bd63f8992bb794",
                "md5": "d6ba9290c7ae624ad354621fba43cd85",
                "sha256": "77e3d048b90d193905afd2ee858f86dba3ee510d4c06547a65ee00cec4bbef35"
            },
            "downloads": -1,
            "filename": "lca_algebraic-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "d6ba9290c7ae624ad354621fba43cd85",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 52887,
            "upload_time": "2024-06-26T14:20:11",
            "upload_time_iso_8601": "2024-06-26T14:20:11.165410Z",
            "url": "https://files.pythonhosted.org/packages/84/dc/68d60c7b78452b556dc2f465d302e7d37dad2f6bb4aa15bd63f8992bb794/lca_algebraic-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-26 14:20:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "oie-mines-paristech",
    "github_project": "lca_algebraic",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "tabulate",
            "specs": []
        },
        {
            "name": "ipywidgets",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "seaborn",
            "specs": []
        },
        {
            "name": "sympy",
            "specs": []
        },
        {
            "name": "nbformat",
            "specs": []
        },
        {
            "name": "nbconvert",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "brightway2",
            "specs": []
        },
        {
            "name": "ipython",
            "specs": []
        },
        {
            "name": "SALib",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "python-dotenv",
            "specs": []
        },
        {
            "name": "pypardiso",
            "specs": []
        },
        {
            "name": "pyarrow",
            "specs": []
        }
    ],
    "lcname": "lca-algebraic"
}
        
Elapsed time: 0.99485s