# Introduction
This library is a layer above [**brightway2**](https://brightway.dev/) designed for the definition of **parametric inventories**
with fast computation of LCA impacts, suitable for **monte-carlo** / global sensitivity analysis
It integrates the magic of [Sympy](https://www.sympy.org/en/index.html) in order to write parametric formulas as regular Python expressions.
**lca-algebraic** provides a set of **helper functions** for :
* **compact** & **human readable** definition of activities :
* search background (tech and biosphere) activities
* create new foreground activities with parametrized amounts
* parametrize / update existing background activities (extending the class **Activity**)
* Definition of parameters
* Fast computation of LCAs
* Computation of monte carlo method and global sensitivity analysis (Sobol indices)
# Installation
We don't provide conda package anymore.
This packages is available via [pip /pypi](https://pypi.org/project/lca-algebraic/)
## 1) Setup separate environement
First create a python environment, with **Python** [>=3.9] :
**With Conda (or [mamba](https://mamba.readthedocs.io/en/latest/index.html))**
```bash
conda env create -n lca python==3.10
conda activate lca
```
**With virtual env**
```bash
python3.10 -m venv .venv
source .venv/bin/activate
```
## 2) Install lca_algebraic
> pip install lca_algebraic
# Licence & Copyright
This library has been developed by [OIE - MinesParistech](http://www.oie.mines-paristech.fr), for the project [*INCER-ACV*](https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4448-incer-acv.html),
lead by [ADEME](https://www.ademe.fr/).
It is distributed under the [BSD License](./LICENSE)
# Mailing list
Please register to this dedicated mailing list to discuss the evolutions of this library and be informed of future releases :
[lca_algebraic@groupes.mines-paristech.fr](https://groupes.minesparis.psl.eu/wws/subscribe/lca_algebraic)
# Documentation
Full documentation and example notebooks are [hosted on **readthedocs**](https://lca-algebraic.readthedocs.io/)
Raw data
{
"_id": null,
"home_page": "https://github.com/oie-mines-paristech/lca_algebraic/",
"name": "lca-algebraic-dev",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "LCA brightway2 monte-carlo parametric",
"author": "OIE - Mines ParisTech",
"author_email": "raphael.jolivet@mines-paristech.fr",
"download_url": "https://files.pythonhosted.org/packages/d0/0b/443f55603cd64d200ddd35eb9182035d70ffe073189a9ece8781d597aa1c/lca_algebraic_dev-1.1.1985003.dev0.tar.gz",
"platform": null,
"description": "# Introduction\n\nThis library is a layer above [**brightway2**](https://brightway.dev/) designed for the definition of **parametric inventories** \nwith fast computation of LCA impacts, suitable for **monte-carlo** / global sensitivity analysis \n\nIt integrates the magic of [Sympy](https://www.sympy.org/en/index.html) in order to write parametric formulas as regular Python expressions.\n\n**lca-algebraic** provides a set of **helper functions** for : \n* **compact** & **human readable** definition of activities : \n * search background (tech and biosphere) activities \n * create new foreground activities with parametrized amounts\n * parametrize / update existing background activities (extending the class **Activity**)\n* Definition of parameters\n* Fast computation of LCAs\n* Computation of monte carlo method and global sensitivity analysis (Sobol indices) \n\n# Installation\n\nWe don't provide conda package anymore.\n\nThis packages is available via [pip /pypi](https://pypi.org/project/lca-algebraic/)\n\n## 1) Setup separate environement\n\nFirst create a python environment, with **Python** [>=3.9] :\n\n**With Conda (or [mamba](https://mamba.readthedocs.io/en/latest/index.html))**\n\n```bash\nconda env create -n lca python==3.10\nconda activate lca\n```\n\n**With virtual env**\n\n```bash\npython3.10 -m venv .venv\nsource .venv/bin/activate\n```\n\n## 2) Install lca_algebraic\n\n> pip install lca_algebraic\n\n\n# Licence & Copyright\n\nThis library has been developed by [OIE - MinesParistech](http://www.oie.mines-paristech.fr), for the project [*INCER-ACV*](https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4448-incer-acv.html), \nlead by [ADEME](https://www.ademe.fr/). \n\nIt is distributed under the [BSD License](./LICENSE)\n\n# Mailing list\n\nPlease register to this dedicated mailing list to discuss the evolutions of this library and be informed of future releases :\n\n[lca_algebraic@groupes.mines-paristech.fr](https://groupes.minesparis.psl.eu/wws/subscribe/lca_algebraic)\n\n\n# Documentation\n\nFull documentation and example notebooks are [hosted on **readthedocs**](https://lca-algebraic.readthedocs.io/)\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "This library provides a layer above brightway2 for defining parametric models and running super fast LCA for monte carlo analysis.",
"version": "1.1.1985003.dev0",
"project_urls": {
"Homepage": "https://github.com/oie-mines-paristech/lca_algebraic/"
},
"split_keywords": [
"lca",
"brightway2",
"monte-carlo",
"parametric"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "265f61d4ef2b5e072d1980d0b0037d42f16e7d8449fdb86a02f4f0d76d7bba0a",
"md5": "32673470e620c0e34585c89cb82134d7",
"sha256": "bbeb9fe7129b923d144305d506db8d2c71c2457b8db13182c841ebbf0bde9295"
},
"downloads": -1,
"filename": "lca_algebraic_dev-1.1.1985003.dev0-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "32673470e620c0e34585c89cb82134d7",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 74499,
"upload_time": "2024-10-10T09:24:00",
"upload_time_iso_8601": "2024-10-10T09:24:00.592983Z",
"url": "https://files.pythonhosted.org/packages/26/5f/61d4ef2b5e072d1980d0b0037d42f16e7d8449fdb86a02f4f0d76d7bba0a/lca_algebraic_dev-1.1.1985003.dev0-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d00b443f55603cd64d200ddd35eb9182035d70ffe073189a9ece8781d597aa1c",
"md5": "7bad4c5005edb3a4b3e93cecade7aaf2",
"sha256": "cf3fcde5d856de2ef59943f99c45fe5e0a26852c3664a099133102eb22002a3a"
},
"downloads": -1,
"filename": "lca_algebraic_dev-1.1.1985003.dev0.tar.gz",
"has_sig": false,
"md5_digest": "7bad4c5005edb3a4b3e93cecade7aaf2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 58324,
"upload_time": "2024-10-10T09:24:02",
"upload_time_iso_8601": "2024-10-10T09:24:02.687849Z",
"url": "https://files.pythonhosted.org/packages/d0/0b/443f55603cd64d200ddd35eb9182035d70ffe073189a9ece8781d597aa1c/lca_algebraic_dev-1.1.1985003.dev0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-10 09:24:02",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "oie-mines-paristech",
"github_project": "lca_algebraic",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "tabulate",
"specs": []
},
{
"name": "ipywidgets",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "seaborn",
"specs": []
},
{
"name": "sympy",
"specs": []
},
{
"name": "nbformat",
"specs": []
},
{
"name": "nbconvert",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "brightway2",
"specs": []
},
{
"name": "ipython",
"specs": []
},
{
"name": "SALib",
"specs": []
},
{
"name": "tqdm",
"specs": []
},
{
"name": "python-dotenv",
"specs": []
},
{
"name": "pypardiso",
"specs": []
},
{
"name": "pyarrow",
"specs": []
}
],
"lcname": "lca-algebraic-dev"
}