levseq-vis


Namelevseq-vis JSON
Version 1.2.6 PyPI version JSON
download
home_pagehttps://github.com/fhalab/levseq/
SummaryNone
upload_time2024-12-02 19:51:27
maintainerNone
docs_urlNone
authorYueming Long, Emreay Gursoy, Ariane Mora, Francesca-Zhoufan Li
requires_python>=3.8
licenseGPL3
keywords nanopore ont evseq levseq
VCS
bugtrack_url
requirements Bio biopandas biopython bokeh fsspec h5py holoviews hvplot jupyter_bokeh jupyterlab mappy matplotlib ninetysix numpy pandas panel pybedtools pycoQC pyfaidx pyparsing pysam scipy sciutil seaborn scikit-learn statsmodels tqdm logomaker biopandas
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # A Beta project LevSeq vis

Web app for combining and visualising [LevSeq](https://github.com/fhalab/LevSeq) sequence function data.

Test it out with the [data](data/) in the data folder. Use the columns in the screenshot below. 

Once you have your figures you can download the csv results by hovering on any of the tables.

## Upload with data

Using the `visualization_partial.csv` file as the variant file and the `300-1` in the `ep1` folder.

### Tables for download
We join the data based on user selected columns (in this case `cis` and `trans`) from a LC-MS run.

![table](images/table.png)

### Overview of alignment count
The alignment count is how many reads assigned to each type were assigned to each well.
![align](images/alignment_count.png)

### Scatterplot of multiple features
This shows the fitness values of two plotted against eachother, if only one feature is provided we will plot it against 
the alignment count.

![align](images/cis_trans.png)
![align](images/single_feature.png)

## Please provide feedback
Leave a feature request in the issues or on [LevSeq](https://github.com/fhalab/LevSeq) . 

## Cite
Cite our [paper](https://doi.org/10.1101/2024.09.04.611255) please if you use it.

## Developers

```
streamlit run app.py
```

## References
Streamlit app based on: https://share.streamlit.io/streamlit/example-app-csv-wrangler/
Thanks to you who made it <3 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/fhalab/levseq/",
    "name": "levseq-vis",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "Nanopore, ONT, evSeq, LevSeq",
    "author": "Yueming Long, Emreay Gursoy, Ariane Mora, Francesca-Zhoufan Li",
    "author_email": "ylong@caltech.edu",
    "download_url": "https://files.pythonhosted.org/packages/92/67/f1c9d22a43a9ed2405d1c0451775ffc97bd9e1eaa7234963376c1e38ef39/levseq_vis-1.2.6.tar.gz",
    "platform": null,
    "description": "# A Beta project LevSeq vis\n\nWeb app for combining and visualising [LevSeq](https://github.com/fhalab/LevSeq) sequence function data.\n\nTest it out with the [data](data/) in the data folder. Use the columns in the screenshot below. \n\nOnce you have your figures you can download the csv results by hovering on any of the tables.\n\n## Upload with data\n\nUsing the `visualization_partial.csv` file as the variant file and the `300-1` in the `ep1` folder.\n\n### Tables for download\nWe join the data based on user selected columns (in this case `cis` and `trans`) from a LC-MS run.\n\n![table](images/table.png)\n\n### Overview of alignment count\nThe alignment count is how many reads assigned to each type were assigned to each well.\n![align](images/alignment_count.png)\n\n### Scatterplot of multiple features\nThis shows the fitness values of two plotted against eachother, if only one feature is provided we will plot it against \nthe alignment count.\n\n![align](images/cis_trans.png)\n![align](images/single_feature.png)\n\n## Please provide feedback\nLeave a feature request in the issues or on [LevSeq](https://github.com/fhalab/LevSeq) . \n\n## Cite\nCite our [paper](https://doi.org/10.1101/2024.09.04.611255) please if you use it.\n\n## Developers\n\n```\nstreamlit run app.py\n```\n\n## References\nStreamlit app based on: https://share.streamlit.io/streamlit/example-app-csv-wrangler/\nThanks to you who made it <3 \n",
    "bugtrack_url": null,
    "license": "GPL3",
    "summary": null,
    "version": "1.2.6",
    "project_urls": {
        "Bug Tracker": "https://github.com/fhalab/levseq/",
        "Documentation": "https://github.com/fhalab/levseq/",
        "Homepage": "https://github.com/fhalab/levseq/",
        "Source Code": "https://github.com/fhalab/levseq/"
    },
    "split_keywords": [
        "nanopore",
        " ont",
        " evseq",
        " levseq"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "91db0c08ce0a7e4685e4026c88d237024cef022290a69b790a54d7ff5991ea5d",
                "md5": "ba63fd501dde7f605e62e9eff7dbcc3e",
                "sha256": "1ad3b31d184d435c5795474ef3f0c8b9c7b6c4c14649a232d268a8c9f2b5bbbe"
            },
            "downloads": -1,
            "filename": "levseq_vis-1.2.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ba63fd501dde7f605e62e9eff7dbcc3e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 28558,
            "upload_time": "2024-12-02T19:51:25",
            "upload_time_iso_8601": "2024-12-02T19:51:25.428408Z",
            "url": "https://files.pythonhosted.org/packages/91/db/0c08ce0a7e4685e4026c88d237024cef022290a69b790a54d7ff5991ea5d/levseq_vis-1.2.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9267f1c9d22a43a9ed2405d1c0451775ffc97bd9e1eaa7234963376c1e38ef39",
                "md5": "b92dbde89fd3bd66109e39268b9a51f3",
                "sha256": "02bdf145380817cae5a20162d53945a213bd435729b211687ecd6f4247247367"
            },
            "downloads": -1,
            "filename": "levseq_vis-1.2.6.tar.gz",
            "has_sig": false,
            "md5_digest": "b92dbde89fd3bd66109e39268b9a51f3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 15659,
            "upload_time": "2024-12-02T19:51:27",
            "upload_time_iso_8601": "2024-12-02T19:51:27.046648Z",
            "url": "https://files.pythonhosted.org/packages/92/67/f1c9d22a43a9ed2405d1c0451775ffc97bd9e1eaa7234963376c1e38ef39/levseq_vis-1.2.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-02 19:51:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fhalab",
    "github_project": "levseq",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "Bio",
            "specs": []
        },
        {
            "name": "biopandas",
            "specs": []
        },
        {
            "name": "biopython",
            "specs": []
        },
        {
            "name": "bokeh",
            "specs": []
        },
        {
            "name": "fsspec",
            "specs": []
        },
        {
            "name": "h5py",
            "specs": []
        },
        {
            "name": "holoviews",
            "specs": []
        },
        {
            "name": "hvplot",
            "specs": []
        },
        {
            "name": "jupyter_bokeh",
            "specs": []
        },
        {
            "name": "jupyterlab",
            "specs": []
        },
        {
            "name": "mappy",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "ninetysix",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "panel",
            "specs": [
                [
                    "==",
                    "1.2.3"
                ]
            ]
        },
        {
            "name": "pybedtools",
            "specs": []
        },
        {
            "name": "pycoQC",
            "specs": []
        },
        {
            "name": "pyfaidx",
            "specs": []
        },
        {
            "name": "pyparsing",
            "specs": []
        },
        {
            "name": "pysam",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "sciutil",
            "specs": []
        },
        {
            "name": "seaborn",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "statsmodels",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "logomaker",
            "specs": []
        },
        {
            "name": "biopandas",
            "specs": []
        }
    ],
    "lcname": "levseq-vis"
}
        
Elapsed time: 0.37163s