# A Beta project LevSeq vis
Web app for combining and visualising [LevSeq](https://github.com/fhalab/LevSeq) sequence function data.
Test it out with the [data](data/) in the data folder. Use the columns in the screenshot below.
Once you have your figures you can download the csv results by hovering on any of the tables.
## Upload with data
Using the `visualization_partial.csv` file as the variant file and the `300-1` in the `ep1` folder.
### Tables for download
We join the data based on user selected columns (in this case `cis` and `trans`) from a LC-MS run.
![table](images/table.png)
### Overview of alignment count
The alignment count is how many reads assigned to each type were assigned to each well.
![align](images/alignment_count.png)
### Scatterplot of multiple features
This shows the fitness values of two plotted against eachother, if only one feature is provided we will plot it against
the alignment count.
![align](images/cis_trans.png)
![align](images/single_feature.png)
## Please provide feedback
Leave a feature request in the issues or on [LevSeq](https://github.com/fhalab/LevSeq) .
## Cite
Cite our [paper](https://doi.org/10.1101/2024.09.04.611255) please if you use it.
## Developers
```
streamlit run app.py
```
## References
Streamlit app based on: https://share.streamlit.io/streamlit/example-app-csv-wrangler/
Thanks to you who made it <3
Raw data
{
"_id": null,
"home_page": "https://github.com/fhalab/levseq/",
"name": "levseq-vis",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "Nanopore, ONT, evSeq, LevSeq",
"author": "Yueming Long, Emreay Gursoy, Ariane Mora, Francesca-Zhoufan Li",
"author_email": "ylong@caltech.edu",
"download_url": "https://files.pythonhosted.org/packages/92/67/f1c9d22a43a9ed2405d1c0451775ffc97bd9e1eaa7234963376c1e38ef39/levseq_vis-1.2.6.tar.gz",
"platform": null,
"description": "# A Beta project LevSeq vis\n\nWeb app for combining and visualising [LevSeq](https://github.com/fhalab/LevSeq) sequence function data.\n\nTest it out with the [data](data/) in the data folder. Use the columns in the screenshot below. \n\nOnce you have your figures you can download the csv results by hovering on any of the tables.\n\n## Upload with data\n\nUsing the `visualization_partial.csv` file as the variant file and the `300-1` in the `ep1` folder.\n\n### Tables for download\nWe join the data based on user selected columns (in this case `cis` and `trans`) from a LC-MS run.\n\n![table](images/table.png)\n\n### Overview of alignment count\nThe alignment count is how many reads assigned to each type were assigned to each well.\n![align](images/alignment_count.png)\n\n### Scatterplot of multiple features\nThis shows the fitness values of two plotted against eachother, if only one feature is provided we will plot it against \nthe alignment count.\n\n![align](images/cis_trans.png)\n![align](images/single_feature.png)\n\n## Please provide feedback\nLeave a feature request in the issues or on [LevSeq](https://github.com/fhalab/LevSeq) . \n\n## Cite\nCite our [paper](https://doi.org/10.1101/2024.09.04.611255) please if you use it.\n\n## Developers\n\n```\nstreamlit run app.py\n```\n\n## References\nStreamlit app based on: https://share.streamlit.io/streamlit/example-app-csv-wrangler/\nThanks to you who made it <3 \n",
"bugtrack_url": null,
"license": "GPL3",
"summary": null,
"version": "1.2.6",
"project_urls": {
"Bug Tracker": "https://github.com/fhalab/levseq/",
"Documentation": "https://github.com/fhalab/levseq/",
"Homepage": "https://github.com/fhalab/levseq/",
"Source Code": "https://github.com/fhalab/levseq/"
},
"split_keywords": [
"nanopore",
" ont",
" evseq",
" levseq"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "91db0c08ce0a7e4685e4026c88d237024cef022290a69b790a54d7ff5991ea5d",
"md5": "ba63fd501dde7f605e62e9eff7dbcc3e",
"sha256": "1ad3b31d184d435c5795474ef3f0c8b9c7b6c4c14649a232d268a8c9f2b5bbbe"
},
"downloads": -1,
"filename": "levseq_vis-1.2.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ba63fd501dde7f605e62e9eff7dbcc3e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 28558,
"upload_time": "2024-12-02T19:51:25",
"upload_time_iso_8601": "2024-12-02T19:51:25.428408Z",
"url": "https://files.pythonhosted.org/packages/91/db/0c08ce0a7e4685e4026c88d237024cef022290a69b790a54d7ff5991ea5d/levseq_vis-1.2.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9267f1c9d22a43a9ed2405d1c0451775ffc97bd9e1eaa7234963376c1e38ef39",
"md5": "b92dbde89fd3bd66109e39268b9a51f3",
"sha256": "02bdf145380817cae5a20162d53945a213bd435729b211687ecd6f4247247367"
},
"downloads": -1,
"filename": "levseq_vis-1.2.6.tar.gz",
"has_sig": false,
"md5_digest": "b92dbde89fd3bd66109e39268b9a51f3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 15659,
"upload_time": "2024-12-02T19:51:27",
"upload_time_iso_8601": "2024-12-02T19:51:27.046648Z",
"url": "https://files.pythonhosted.org/packages/92/67/f1c9d22a43a9ed2405d1c0451775ffc97bd9e1eaa7234963376c1e38ef39/levseq_vis-1.2.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-02 19:51:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "fhalab",
"github_project": "levseq",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "Bio",
"specs": []
},
{
"name": "biopandas",
"specs": []
},
{
"name": "biopython",
"specs": []
},
{
"name": "bokeh",
"specs": []
},
{
"name": "fsspec",
"specs": []
},
{
"name": "h5py",
"specs": []
},
{
"name": "holoviews",
"specs": []
},
{
"name": "hvplot",
"specs": []
},
{
"name": "jupyter_bokeh",
"specs": []
},
{
"name": "jupyterlab",
"specs": []
},
{
"name": "mappy",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "ninetysix",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "panel",
"specs": [
[
"==",
"1.2.3"
]
]
},
{
"name": "pybedtools",
"specs": []
},
{
"name": "pycoQC",
"specs": []
},
{
"name": "pyfaidx",
"specs": []
},
{
"name": "pyparsing",
"specs": []
},
{
"name": "pysam",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "sciutil",
"specs": []
},
{
"name": "seaborn",
"specs": []
},
{
"name": "scikit-learn",
"specs": []
},
{
"name": "statsmodels",
"specs": []
},
{
"name": "tqdm",
"specs": []
},
{
"name": "logomaker",
"specs": []
},
{
"name": "biopandas",
"specs": []
}
],
"lcname": "levseq-vis"
}