meridianalgo-smarttrader


Namemeridianalgo-smarttrader JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/MeridianAlgo/In-Python
SummaryUltra-Accurate AI Stock Analysis with Universal GPU Support (AMD β€’ Intel β€’ NVIDIA β€’ Apple)
upload_time2025-07-25 18:48:31
maintainerNone
docs_urlNone
authorMeridianAlgo
requires_python>=3.8
licenseMIT
keywords stock-analysis ai machine-learning trading finance gpu amd nvidia intel apple-silicon pytorch ensemble-learning volatility technical-analysis predictions
VCS
bugtrack_url
requirements torch pandas numpy scikit-learn yfinance matplotlib seaborn shap ta python-dotenv requests psutil colorama tabulate tqdm joblib rich
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # πŸš€ MeridianAlgo Smart Trader

**Ultra-Accurate AI Stock Analysis with Universal GPU Support**

[![PyPI version](https://badge.fury.io/py/meridianalgo-smarttrader.svg)](https://badge.fury.io/py/meridianalgo-smarttrader)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![GPU Support](https://img.shields.io/badge/GPU-AMD%20%E2%80%A2%20Intel%20%E2%80%A2%20NVIDIA%20%E2%80%A2%20Apple-green.svg)](https://github.com/MeridianAlgo/In-Python)

Professional-grade stock analysis powered by ensemble machine learning with universal GPU acceleration. Features advanced volatility spike detection and real-time technical analysis.

## ✨ Key Features

- 🎯 **Ultra-Accurate Predictions**: Ensemble ML models (LSTM + Transformer + XGBoost)
- πŸ”₯ **Universal GPU Support**: AMD β€’ Intel β€’ NVIDIA β€’ Apple Silicon
- ⚑ **Volatility Spike Detection**: Predict market turbulence before it happens
- πŸ“Š **Real-time Analysis**: Live market data with technical indicators
- 🎨 **Clean Output**: Simplified, essential information only
- πŸš€ **Easy Integration**: Simple Python API and CLI

## πŸš€ Quick Start

### Installation

```bash
pip install meridianalgo-smarttrader
```

### Command Line Usage

```bash
# Analyze Apple stock
smart-trader AAPL

# Custom parameters
smart-trader TSLA --days 90 --epochs 15

# Show GPU information
smart-trader --gpu-info
```

### Python API Usage

```python
from meridianalgo import SmartTrader, analyze_stock

# Simple analysis
result = analyze_stock('AAPL')
print(f"Current: ${result['current_price']:.2f}")
print(f"Tomorrow: ${result['predictions'][0]:.2f}")

# Advanced usage
trader = SmartTrader(verbose=True)
analysis = trader.analyze('TSLA', days=60, epochs=10)

# Check volatility spike risk
vol_risk = analysis['volatility_spike']['spike_probability']
if vol_risk > 60:
    print("⚠️ High volatility spike risk detected!")
```

## πŸ“Š Sample Output

```
πŸš€ AAPL Analysis
Device: CPU (8 threads)

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Metric     β”‚ Value    β”‚ Info             β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Current    β”‚ $213.96  β”‚ Real-time        β”‚
β”‚ Day +1     β”‚ $216.45  β”‚ +1.2%            β”‚
β”‚ Day +2     β”‚ $218.30  β”‚ +2.0%            β”‚
β”‚ Day +3     β”‚ $215.80  β”‚ +0.9%            β”‚
β”‚ Confidence β”‚ 84%      β”‚ Model reliabilityβ”‚
β”‚ Vol Risk   β”‚ 23%      β”‚ βœ… Low risk      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

## πŸ”₯ Universal GPU Support

Smart Trader automatically detects and optimizes for your GPU:

| Vendor | Technology | Status |
|--------|------------|--------|
| 🟒 NVIDIA | CUDA | βœ… Supported |
| πŸ”΄ AMD | ROCm/DirectML | βœ… Supported |
| πŸ”΅ Intel | XPU | βœ… Supported |
| 🍎 Apple | MPS | βœ… Supported |

### GPU Setup

```bash
# NVIDIA GPU
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

# AMD GPU (Windows)
pip install torch-directml

# Intel GPU
pip install intel-extension-for-pytorch

# Apple Silicon (automatic)
pip install torch torchvision torchaudio
```

## ⚑ Volatility Spike Detection

Smart Trader's advanced algorithm analyzes historical volatility patterns to predict future market turbulence:

```python
from meridianalgo import detect_volatility_spikes
import yfinance as yf

# Get stock data
data = yf.Ticker('AAPL').history(period='1y')

# Detect volatility spikes
spike_info = detect_volatility_spikes(data)

print(f"Spike Probability: {spike_info['spike_probability']:.1f}%")
print(f"Expected in: {spike_info['expected_spike_days']} days")
print(f"Risk Level: {spike_info['risk_level']}")
```

## 🎯 Advanced Features

### Ensemble Models
- **LSTM**: Captures long-term dependencies
- **Transformer**: Attention-based pattern recognition  
- **XGBoost**: Gradient boosting for robustness

### Technical Indicators
- RSI (Relative Strength Index)
- MACD (Moving Average Convergence Divergence)
- Bollinger Bands
- Volume analysis

### Risk Management
- Volatility spike prediction
- Market regime detection
- Confidence scoring
- Position sizing recommendations

## πŸ“ˆ Performance

| Metric | CPU | GPU |
|--------|-----|-----|
| Training Time (10 epochs) | ~2-3 seconds | ~0.5-1 seconds |
| Batch Size | 32 | 64+ |
| Memory Usage | 2-4 GB RAM | GPU VRAM |
| Accuracy | High | Higher |

## πŸ› οΈ Development

### Local Installation

```bash
git clone https://github.com/MeridianAlgo/In-Python.git
cd In-Python
pip install -e .
```

### Running Tests

```bash
pytest tests/
```

### Building Package

```bash
python setup.py sdist bdist_wheel
twine upload dist/*
```

## πŸ“š Documentation

- [GPU Setup Guide](GPU_SETUP_GUIDE.md)
- [API Reference](docs/api.md)
- [Examples](examples/)
- [Contributing](CONTRIBUTING.md)

## 🀝 Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

## πŸ“„ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## πŸ”— Links

- **PyPI**: https://pypi.org/project/meridianalgo/
- **GitHub**: https://github.com/MeridianAlgo/In-Python
- **Documentation**: https://meridianalgo.github.io/In-Python/
- **Issues**: https://github.com/MeridianAlgo/In-Python/issues

## πŸ† About MeridianAlgo

MeridianAlgo specializes in advanced financial AI solutions. Our mission is to democratize professional-grade trading tools through cutting-edge machine learning and universal GPU acceleration.

---

**Made with ❀️ by MeridianAlgo**

*Empowering traders with AI-driven insights*

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/MeridianAlgo/In-Python",
    "name": "meridianalgo-smarttrader",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "MeridianAlgo <contact@meridianalgo.com>",
    "keywords": "stock-analysis, ai, machine-learning, trading, finance, gpu, amd, nvidia, intel, apple-silicon, pytorch, ensemble-learning, volatility, technical-analysis, predictions",
    "author": "MeridianAlgo",
    "author_email": "MeridianAlgo <contact@meridianalgo.com>",
    "download_url": "https://files.pythonhosted.org/packages/f8/05/d8786d225ef41d35c581af9b8cbabfdbe1961eb9aad0e4ed9b4d06c96fbb/meridianalgo_smarttrader-1.0.0.tar.gz",
    "platform": null,
    "description": "# \ud83d\ude80 MeridianAlgo Smart Trader\r\n\r\n**Ultra-Accurate AI Stock Analysis with Universal GPU Support**\r\n\r\n[![PyPI version](https://badge.fury.io/py/meridianalgo-smarttrader.svg)](https://badge.fury.io/py/meridianalgo-smarttrader)\r\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\r\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\r\n[![GPU Support](https://img.shields.io/badge/GPU-AMD%20%E2%80%A2%20Intel%20%E2%80%A2%20NVIDIA%20%E2%80%A2%20Apple-green.svg)](https://github.com/MeridianAlgo/In-Python)\r\n\r\nProfessional-grade stock analysis powered by ensemble machine learning with universal GPU acceleration. Features advanced volatility spike detection and real-time technical analysis.\r\n\r\n## \u2728 Key Features\r\n\r\n- \ud83c\udfaf **Ultra-Accurate Predictions**: Ensemble ML models (LSTM + Transformer + XGBoost)\r\n- \ud83d\udd25 **Universal GPU Support**: AMD \u2022 Intel \u2022 NVIDIA \u2022 Apple Silicon\r\n- \u26a1 **Volatility Spike Detection**: Predict market turbulence before it happens\r\n- \ud83d\udcca **Real-time Analysis**: Live market data with technical indicators\r\n- \ud83c\udfa8 **Clean Output**: Simplified, essential information only\r\n- \ud83d\ude80 **Easy Integration**: Simple Python API and CLI\r\n\r\n## \ud83d\ude80 Quick Start\r\n\r\n### Installation\r\n\r\n```bash\r\npip install meridianalgo-smarttrader\r\n```\r\n\r\n### Command Line Usage\r\n\r\n```bash\r\n# Analyze Apple stock\r\nsmart-trader AAPL\r\n\r\n# Custom parameters\r\nsmart-trader TSLA --days 90 --epochs 15\r\n\r\n# Show GPU information\r\nsmart-trader --gpu-info\r\n```\r\n\r\n### Python API Usage\r\n\r\n```python\r\nfrom meridianalgo import SmartTrader, analyze_stock\r\n\r\n# Simple analysis\r\nresult = analyze_stock('AAPL')\r\nprint(f\"Current: ${result['current_price']:.2f}\")\r\nprint(f\"Tomorrow: ${result['predictions'][0]:.2f}\")\r\n\r\n# Advanced usage\r\ntrader = SmartTrader(verbose=True)\r\nanalysis = trader.analyze('TSLA', days=60, epochs=10)\r\n\r\n# Check volatility spike risk\r\nvol_risk = analysis['volatility_spike']['spike_probability']\r\nif vol_risk > 60:\r\n    print(\"\u26a0\ufe0f High volatility spike risk detected!\")\r\n```\r\n\r\n## \ud83d\udcca Sample Output\r\n\r\n```\r\n\ud83d\ude80 AAPL Analysis\r\nDevice: CPU (8 threads)\r\n\r\n\u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\r\n\u2502 Metric     \u2502 Value    \u2502 Info             \u2502\r\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\r\n\u2502 Current    \u2502 $213.96  \u2502 Real-time        \u2502\r\n\u2502 Day +1     \u2502 $216.45  \u2502 +1.2%            \u2502\r\n\u2502 Day +2     \u2502 $218.30  \u2502 +2.0%            \u2502\r\n\u2502 Day +3     \u2502 $215.80  \u2502 +0.9%            \u2502\r\n\u2502 Confidence \u2502 84%      \u2502 Model reliability\u2502\r\n\u2502 Vol Risk   \u2502 23%      \u2502 \u2705 Low risk      \u2502\r\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\r\n```\r\n\r\n## \ud83d\udd25 Universal GPU Support\r\n\r\nSmart Trader automatically detects and optimizes for your GPU:\r\n\r\n| Vendor | Technology | Status |\r\n|--------|------------|--------|\r\n| \ud83d\udfe2 NVIDIA | CUDA | \u2705 Supported |\r\n| \ud83d\udd34 AMD | ROCm/DirectML | \u2705 Supported |\r\n| \ud83d\udd35 Intel | XPU | \u2705 Supported |\r\n| \ud83c\udf4e Apple | MPS | \u2705 Supported |\r\n\r\n### GPU Setup\r\n\r\n```bash\r\n# NVIDIA GPU\r\npip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121\r\n\r\n# AMD GPU (Windows)\r\npip install torch-directml\r\n\r\n# Intel GPU\r\npip install intel-extension-for-pytorch\r\n\r\n# Apple Silicon (automatic)\r\npip install torch torchvision torchaudio\r\n```\r\n\r\n## \u26a1 Volatility Spike Detection\r\n\r\nSmart Trader's advanced algorithm analyzes historical volatility patterns to predict future market turbulence:\r\n\r\n```python\r\nfrom meridianalgo import detect_volatility_spikes\r\nimport yfinance as yf\r\n\r\n# Get stock data\r\ndata = yf.Ticker('AAPL').history(period='1y')\r\n\r\n# Detect volatility spikes\r\nspike_info = detect_volatility_spikes(data)\r\n\r\nprint(f\"Spike Probability: {spike_info['spike_probability']:.1f}%\")\r\nprint(f\"Expected in: {spike_info['expected_spike_days']} days\")\r\nprint(f\"Risk Level: {spike_info['risk_level']}\")\r\n```\r\n\r\n## \ud83c\udfaf Advanced Features\r\n\r\n### Ensemble Models\r\n- **LSTM**: Captures long-term dependencies\r\n- **Transformer**: Attention-based pattern recognition  \r\n- **XGBoost**: Gradient boosting for robustness\r\n\r\n### Technical Indicators\r\n- RSI (Relative Strength Index)\r\n- MACD (Moving Average Convergence Divergence)\r\n- Bollinger Bands\r\n- Volume analysis\r\n\r\n### Risk Management\r\n- Volatility spike prediction\r\n- Market regime detection\r\n- Confidence scoring\r\n- Position sizing recommendations\r\n\r\n## \ud83d\udcc8 Performance\r\n\r\n| Metric | CPU | GPU |\r\n|--------|-----|-----|\r\n| Training Time (10 epochs) | ~2-3 seconds | ~0.5-1 seconds |\r\n| Batch Size | 32 | 64+ |\r\n| Memory Usage | 2-4 GB RAM | GPU VRAM |\r\n| Accuracy | High | Higher |\r\n\r\n## \ud83d\udee0\ufe0f Development\r\n\r\n### Local Installation\r\n\r\n```bash\r\ngit clone https://github.com/MeridianAlgo/In-Python.git\r\ncd In-Python\r\npip install -e .\r\n```\r\n\r\n### Running Tests\r\n\r\n```bash\r\npytest tests/\r\n```\r\n\r\n### Building Package\r\n\r\n```bash\r\npython setup.py sdist bdist_wheel\r\ntwine upload dist/*\r\n```\r\n\r\n## \ud83d\udcda Documentation\r\n\r\n- [GPU Setup Guide](GPU_SETUP_GUIDE.md)\r\n- [API Reference](docs/api.md)\r\n- [Examples](examples/)\r\n- [Contributing](CONTRIBUTING.md)\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\r\n\r\n## \ud83d\udcc4 License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83d\udd17 Links\r\n\r\n- **PyPI**: https://pypi.org/project/meridianalgo/\r\n- **GitHub**: https://github.com/MeridianAlgo/In-Python\r\n- **Documentation**: https://meridianalgo.github.io/In-Python/\r\n- **Issues**: https://github.com/MeridianAlgo/In-Python/issues\r\n\r\n## \ud83c\udfc6 About MeridianAlgo\r\n\r\nMeridianAlgo specializes in advanced financial AI solutions. Our mission is to democratize professional-grade trading tools through cutting-edge machine learning and universal GPU acceleration.\r\n\r\n---\r\n\r\n**Made with \u2764\ufe0f by MeridianAlgo**\r\n\r\n*Empowering traders with AI-driven insights*\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Ultra-Accurate AI Stock Analysis with Universal GPU Support (AMD \u2022 Intel \u2022 NVIDIA \u2022 Apple)",
    "version": "1.0.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/MeridianAlgo/smart-trader/issues",
        "Changelog": "https://github.com/MeridianAlgo/smart-trader/blob/main/CHANGELOG.md",
        "Documentation": "https://github.com/MeridianAlgo/smart-trader/blob/main/README.md",
        "Homepage": "https://github.com/MeridianAlgo/smart-trader",
        "PyPI": "https://pypi.org/project/meridianalgo-smarttrader/",
        "Repository": "https://github.com/MeridianAlgo/smart-trader.git"
    },
    "split_keywords": [
        "stock-analysis",
        " ai",
        " machine-learning",
        " trading",
        " finance",
        " gpu",
        " amd",
        " nvidia",
        " intel",
        " apple-silicon",
        " pytorch",
        " ensemble-learning",
        " volatility",
        " technical-analysis",
        " predictions"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "70587a6cf040d5a8b23f1c2c968c4fc97ea2e84ebd7d181743eaddaaeff02035",
                "md5": "cbcbd77c044e6ba2eb370c27aad7c443",
                "sha256": "636366d625c850844ea5d7f202e0b002429bd01ad540ad9e8103b0db9cb481a6"
            },
            "downloads": -1,
            "filename": "meridianalgo_smarttrader-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cbcbd77c044e6ba2eb370c27aad7c443",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 18432,
            "upload_time": "2025-07-25T18:48:30",
            "upload_time_iso_8601": "2025-07-25T18:48:30.621590Z",
            "url": "https://files.pythonhosted.org/packages/70/58/7a6cf040d5a8b23f1c2c968c4fc97ea2e84ebd7d181743eaddaaeff02035/meridianalgo_smarttrader-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f805d8786d225ef41d35c581af9b8cbabfdbe1961eb9aad0e4ed9b4d06c96fbb",
                "md5": "4006e6a053a5c7e8d6f10425a41352cf",
                "sha256": "e11db48fe820e5df1b07ee265243f47f267111d2202aebf02a28f1b630bd76fe"
            },
            "downloads": -1,
            "filename": "meridianalgo_smarttrader-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "4006e6a053a5c7e8d6f10425a41352cf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 78957,
            "upload_time": "2025-07-25T18:48:31",
            "upload_time_iso_8601": "2025-07-25T18:48:31.998859Z",
            "url": "https://files.pythonhosted.org/packages/f8/05/d8786d225ef41d35c581af9b8cbabfdbe1961eb9aad0e4ed9b4d06c96fbb/meridianalgo_smarttrader-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-25 18:48:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MeridianAlgo",
    "github_project": "In-Python",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "2.1.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "2.1.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.24.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "yfinance",
            "specs": [
                [
                    ">=",
                    "0.2.18"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.7.0"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.12.0"
                ]
            ]
        },
        {
            "name": "shap",
            "specs": [
                [
                    ">=",
                    "0.43.0"
                ]
            ]
        },
        {
            "name": "ta",
            "specs": [
                [
                    ">=",
                    "0.10.2"
                ]
            ]
        },
        {
            "name": "python-dotenv",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.31.0"
                ]
            ]
        },
        {
            "name": "psutil",
            "specs": [
                [
                    ">=",
                    "5.9.0"
                ]
            ]
        },
        {
            "name": "colorama",
            "specs": [
                [
                    ">=",
                    "0.4.6"
                ]
            ]
        },
        {
            "name": "tabulate",
            "specs": [
                [
                    ">=",
                    "0.9.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    ">=",
                    "4.66.0"
                ]
            ]
        },
        {
            "name": "joblib",
            "specs": [
                [
                    ">=",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "rich",
            "specs": [
                [
                    ">=",
                    "13.7.0"
                ]
            ]
        }
    ],
    "lcname": "meridianalgo-smarttrader"
}
        
Elapsed time: 1.43234s