PyTransit
=========
[![Licence](http://img.shields.io/badge/license-GPLv2-blue.svg?style=flat)](http://www.gnu.org/licenses/gpl-2.0.html)
[![MNRAS](https://img.shields.io/badge/MNRAS-10.1093%2Fmnras%2Fstv894-blue.svg)](http://mnras.oxfordjournals.org/content/450/3/3233)
[![arXiv](http://img.shields.io/badge/arXiv-1504.07433-blue.svg?style=flat)](http://arxiv.org/abs/1504.07433)
[![ASCL](https://img.shields.io/badge/ASCL-A1505.024-blue.svg?style=flat)](http://ascl.net/1505.024)
[![DOI](https://zenodo.org/badge/5871/hpparvi/PyTransit.svg)](https://zenodo.org/badge/latestdoi/5871/hpparvi/PyTransit)
*PyTransit: fast and versatile exoplanet transit light curve modelling in Python.* PyTransit provides a set of optimised
transit models with a unified API that makes modelling complex sets of heterogeneous light curve (nearly) as easy as
modelling individual transit light curves. The models are optimised with Numba which allows for model evaluation speeds
paralleling Fortran and C-implementations but with hassle-free platform-independent multithreading.
The package has been under continuous development since 2009, and is described in [Parviainen (2015)](http://arxiv.org/abs/1504.07433),
[Parviainen (2020a)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.1633P/abstract), and [Parviainen & Korth (2020b)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.3356P/abstract).
```Python
from pytransit import RoadRunnerModel
tm = RoadRunnerModel('quadratic')
tm.set_data(times)
tm.evaluate(k=0.1, ldc=[0.2, 0.1], t0=0.0, p=1.0, a=3.0, i=0.5*pi)
tm.evaluate(k=[0.10, 0.12], ldc=[[0.2, 0.1], [0.5, 0.1]], t0=0.0, p=1.0, a=3.0, i=0.5*pi)
tm.evaluate(k=[[0.10, 0.12], [0.11, 0.13]], ldc=[[0.2, 0.1], [0.5, 0.1],[0.4, 0.2, 0.75, 0.1]],
t0=[0.0, 0.01], p=[1, 1], a=[3.0, 2.9], i=[.5*pi, .5*pi])
```
![](doc/source/basic_example_1.svg)
![](doc/source/basic_example_2.svg)
![](doc/source/basic_example_3.svg)
## Examples and tutorials
### EMAC Workshop introduction video
[![EMAC Workshop PyTransit introduction video](video1.png)](https://youtu.be/bLnxkFNrMDQ?si=OTjr4kUGK1kkhkLC)
### RoadRunner transit model
RoadRunner [(Parviainen, 2020a)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.1633P/abstract) is a fast exoplanet transit model that can use any radially symmetric function to model stellar limb darkening
while still being faster to evaluate than the analytical transit model for quadratic limb darkening.
- [RRModel example 1](https://github.com/hpparvi/PyTransit/blob/dev/doc/source/notebooks/models/roadrunner/roadrunner_model_example_1.ipynb)
shows how to use RoadRunner with the included limb darkening models.
- [RRModel example 2](https://github.com/hpparvi/PyTransit/blob/dev/doc/source/notebooks/models/roadrunner/roadrunner_model_example_2.ipynb)
shows how to use RoadRunner with your own limb darkening model.
- [RRModel example 3](https://github.com/hpparvi/PyTransit/blob/dev/doc/source/notebooks/models/roadrunner/roadrunner_model_example_3.ipynb)
shows how to use an LDTk-based limb darkening model LDTkM with RoadRunner.
### Transmission spectroscopy transit model
Transmission spectroscopy transit model (TSModel) is a special version of the RoadRunner model dedicated to modelling
transmission spectrum light curves.
- [TSModel Example 1](https://github.com/hpparvi/PyTransit/blob/dev/notebooks/roadrunner/tsmodel_example_1.ipynb)
## Documentation
Read the docs at [pytransit.readthedocs.io](https://pytransit.readthedocs.io).
Installation
------------
### PyPI
The easiest way to install PyTransit is by using `pip`
pip install pytransit
### GitHub
Clone the repository from github and do the normal python package installation
git clone https://github.com/hpparvi/PyTransit.git
cd PyTransit
pip install .
Citing
------
If you use PyTransit in your reserach, please cite
Parviainen, H. MNRAS 450, 3233–3238 (2015) (DOI:10.1093/mnras/stv894).
or use this ready-made BibTeX entry
@article{Parviainen2015,
author = {Parviainen, Hannu},
doi = {10.1093/mnras/stv894},
journal = {MNRAS},
number = {April},
pages = {3233--3238},
title = {{PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON}},
url = {http://mnras.oxfordjournals.org/cgi/doi/10.1093/mnras/stv894},
volume = {450},
year = {2015}
}
Author
------
- [Hannu Parviainen](mailto:hpparvi@gmail.com), Instituto de Astrofísica de Canarias
Raw data
{
"_id": null,
"home_page": null,
"name": "PyTransit",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "astronomy, astrophysics, exoplanets",
"author": null,
"author_email": "Hannu Parviainen <hpparvi@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/b9/6b/2954c19741ba06872af5771d4723c41455312e43f72da4b6d4a8997e6823/pytransit-2.6.13.tar.gz",
"platform": null,
"description": "PyTransit\n=========\n\n[![Licence](http://img.shields.io/badge/license-GPLv2-blue.svg?style=flat)](http://www.gnu.org/licenses/gpl-2.0.html)\n[![MNRAS](https://img.shields.io/badge/MNRAS-10.1093%2Fmnras%2Fstv894-blue.svg)](http://mnras.oxfordjournals.org/content/450/3/3233)\n[![arXiv](http://img.shields.io/badge/arXiv-1504.07433-blue.svg?style=flat)](http://arxiv.org/abs/1504.07433)\n[![ASCL](https://img.shields.io/badge/ASCL-A1505.024-blue.svg?style=flat)](http://ascl.net/1505.024)\n[![DOI](https://zenodo.org/badge/5871/hpparvi/PyTransit.svg)](https://zenodo.org/badge/latestdoi/5871/hpparvi/PyTransit)\n\n*PyTransit: fast and versatile exoplanet transit light curve modelling in Python.* PyTransit provides a set of optimised\ntransit models with a unified API that makes modelling complex sets of heterogeneous light curve (nearly) as easy as \nmodelling individual transit light curves. The models are optimised with Numba which allows for model evaluation speeds\nparalleling Fortran and C-implementations but with hassle-free platform-independent multithreading.\n\nThe package has been under continuous development since 2009, and is described in [Parviainen (2015)](http://arxiv.org/abs/1504.07433), \n[Parviainen (2020a)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.1633P/abstract), and [Parviainen & Korth (2020b)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.3356P/abstract). \n\n\n```Python\nfrom pytransit import RoadRunnerModel\n\ntm = RoadRunnerModel('quadratic')\ntm.set_data(times)\n\ntm.evaluate(k=0.1, ldc=[0.2, 0.1], t0=0.0, p=1.0, a=3.0, i=0.5*pi)\n\ntm.evaluate(k=[0.10, 0.12], ldc=[[0.2, 0.1], [0.5, 0.1]], t0=0.0, p=1.0, a=3.0, i=0.5*pi)\n\ntm.evaluate(k=[[0.10, 0.12], [0.11, 0.13]], ldc=[[0.2, 0.1], [0.5, 0.1],[0.4, 0.2, 0.75, 0.1]],\n t0=[0.0, 0.01], p=[1, 1], a=[3.0, 2.9], i=[.5*pi, .5*pi])\n```\n\n![](doc/source/basic_example_1.svg)\n![](doc/source/basic_example_2.svg)\n![](doc/source/basic_example_3.svg)\n\n\n\n \n## Examples and tutorials\n\n### EMAC Workshop introduction video\n\n[![EMAC Workshop PyTransit introduction video](video1.png)](https://youtu.be/bLnxkFNrMDQ?si=OTjr4kUGK1kkhkLC)\n\n### RoadRunner transit model\n\nRoadRunner [(Parviainen, 2020a)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.1633P/abstract) is a fast exoplanet transit model that can use any radially symmetric function to model stellar limb darkening \nwhile still being faster to evaluate than the analytical transit model for quadratic limb darkening.\n\n- [RRModel example 1](https://github.com/hpparvi/PyTransit/blob/dev/doc/source/notebooks/models/roadrunner/roadrunner_model_example_1.ipynb) \n shows how to use RoadRunner with the included limb darkening models.\n- [RRModel example 2](https://github.com/hpparvi/PyTransit/blob/dev/doc/source/notebooks/models/roadrunner/roadrunner_model_example_2.ipynb)\n shows how to use RoadRunner with your own limb darkening model.\n- [RRModel example 3](https://github.com/hpparvi/PyTransit/blob/dev/doc/source/notebooks/models/roadrunner/roadrunner_model_example_3.ipynb) \n shows how to use an LDTk-based limb darkening model LDTkM with RoadRunner.\n\n### Transmission spectroscopy transit model\n\nTransmission spectroscopy transit model (TSModel) is a special version of the RoadRunner model dedicated to modelling \ntransmission spectrum light curves. \n \n - [TSModel Example 1](https://github.com/hpparvi/PyTransit/blob/dev/notebooks/roadrunner/tsmodel_example_1.ipynb)\n\n\n## Documentation\n\nRead the docs at [pytransit.readthedocs.io](https://pytransit.readthedocs.io).\n\nInstallation\n------------\n### PyPI\n\nThe easiest way to install PyTransit is by using `pip`\n\n pip install pytransit\n\n### GitHub\n\nClone the repository from github and do the normal python package installation\n\n git clone https://github.com/hpparvi/PyTransit.git\n cd PyTransit\n pip install .\n\n\nCiting\n------\n\nIf you use PyTransit in your reserach, please cite\n\nParviainen, H. MNRAS 450, 3233\u20133238 (2015) (DOI:10.1093/mnras/stv894).\n\nor use this ready-made BibTeX entry\n\n @article{Parviainen2015,\n author = {Parviainen, Hannu},\n doi = {10.1093/mnras/stv894},\n journal = {MNRAS},\n number = {April},\n pages = {3233--3238},\n title = {{PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON}},\n url = {http://mnras.oxfordjournals.org/cgi/doi/10.1093/mnras/stv894},\n volume = {450},\n year = {2015}\n }\n\nAuthor\n------\n - [Hannu Parviainen](mailto:hpparvi@gmail.com), Instituto de Astrof\u00edsica de Canarias\n",
"bugtrack_url": null,
"license": "GPLv2",
"summary": "Fast and painless exoplanet transit light curve modelling.",
"version": "2.6.13",
"project_urls": {
"homepage": "https://github.com/hpparvi/PyTransit"
},
"split_keywords": [
"astronomy",
" astrophysics",
" exoplanets"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fe54616826be43f8d84774bfc2fee1300f0652ed16cf2100b650b8ab8d36e03b",
"md5": "639b382b29631bb98b7ab34345c3ba0c",
"sha256": "70ff088908ea30a06d5e1b385c23747f90e266051d1711cc6172296fcf025706"
},
"downloads": -1,
"filename": "PyTransit-2.6.13-py3-none-any.whl",
"has_sig": false,
"md5_digest": "639b382b29631bb98b7ab34345c3ba0c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 10852043,
"upload_time": "2024-11-26T14:32:14",
"upload_time_iso_8601": "2024-11-26T14:32:14.563408Z",
"url": "https://files.pythonhosted.org/packages/fe/54/616826be43f8d84774bfc2fee1300f0652ed16cf2100b650b8ab8d36e03b/PyTransit-2.6.13-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b96b2954c19741ba06872af5771d4723c41455312e43f72da4b6d4a8997e6823",
"md5": "d90be526860b1d92ea0c4c45a61e1569",
"sha256": "a01a235cc6cf27e15d75e5447127d05f9a2e2ded6cf4a93ceb6fce5ccce5cb58"
},
"downloads": -1,
"filename": "pytransit-2.6.13.tar.gz",
"has_sig": false,
"md5_digest": "d90be526860b1d92ea0c4c45a61e1569",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 10707405,
"upload_time": "2024-11-26T14:32:19",
"upload_time_iso_8601": "2024-11-26T14:32:19.453806Z",
"url": "https://files.pythonhosted.org/packages/b9/6b/2954c19741ba06872af5771d4723c41455312e43f72da4b6d4a8997e6823/pytransit-2.6.13.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-26 14:32:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hpparvi",
"github_project": "PyTransit",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "arviz",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "xarray",
"specs": []
},
{
"name": "tables",
"specs": []
},
{
"name": "uncertainties",
"specs": []
},
{
"name": "numba",
"specs": []
},
{
"name": "astropy",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "tqdm",
"specs": []
},
{
"name": "semantic_version",
"specs": []
},
{
"name": "setuptools",
"specs": []
},
{
"name": "deprecated",
"specs": []
},
{
"name": "seaborn",
"specs": []
},
{
"name": "emcee",
"specs": []
},
{
"name": "pyopencl",
"specs": []
},
{
"name": "corner",
"specs": []
},
{
"name": "celerite",
"specs": []
},
{
"name": "meepmeep",
"specs": []
}
],
"lcname": "pytransit"
}