# 🦈 SharkPy
A friendly machine learning framework with shark-themed feedback! SharkPy simplifies the machine learning workflow while making it fun and educational.
## Features
- **Model Battle Arena**: Compare multiple models automatically
- **Smart Reporting**: Generate reports in TXT, PDF, and DOCX formats
- **Interactive Visualization**: Beautiful plots with shark-themed styling
- **Model Explanations**: Clear explanations of model behavior
- **Automated Optimization**: Hyperparameter tuning with Optuna
- **Shapash Integration**: Interactive dashboards for model interpretation
## Quick Start
### Installation
```bash
# Basic installation
pip install sharkpy
# Full installation (includes LightGBM and CatBoost)
pip install sharkpy[full]
# Development installation
pip install sharkpy[dev]
```
### Basic Usage
```python
from sharkpy import Shark
import pandas as pd
# Create a Shark instance
shark = Shark()
# Load your data
data = pd.read_csv('your_data.csv')
# Train a model
shark.learn(
data=data,
target='target_column',
model_choice='random_forest'
)
# Make predictions
predictions = shark.predict(new_data)
# Generate reports
shark.report(export_path='report.pdf', format='pdf')
```
### Model Battle Example
```python
# Define models to compete
models = [
'linear_regression',
'random_forest',
'xgboost',
'lightgbm',
'catboost'
]
# Let them battle!
battle_results = shark.battle(
data=data,
target='target_column',
models=models,
metric='r2'
)
# Get the champion
print(f"Winner: {battle_results['champion']}")
print(f"Score: {battle_results['score']:.4f}")
```
## Supported Models
- Linear Regression
- Logistic Regression
- Random Forest
- Support Vector Machines
- Ridge Regression
- Lasso Regression
- K-Nearest Neighbors
- XGBoost
- LightGBM (with full installation)
- CatBoost (with full installation)
## Reports
SharkPy can generate comprehensive reports in multiple formats:
```python
# Text report
shark.report(export_path='report.txt', format='txt')
# PDF report (requires MS Word or LibreOffice)
shark.report(export_path='report.pdf', format='pdf')
# Word document
shark.report(export_path='report.docx', format='docx')
```
## Visualizations
```python
# Prediction plot
shark.plot(kind="prediction")
# Feature importance
shark.plot(kind="feature_importance")
# Interactive Shapash dashboard
shark.explain_with_shapash()
```
## Model Explanations
```python
# Get friendly explanations of your model
shark.explain()
# Create interactive Shapash dashboard
shark.explain_with_shapash(title_story="My Analysis")
```
## Save & Load Models
```python
# Save your model
shark.save_model(name="my_model")
# Load a saved model
shark.load_model("models/my_model.joblib")
```
## Development
```bash
# Install development dependencies
pip install sharkpy[dev]
# Run tests
pytest
# Format code
black sharkpy/
```
## Documentation
Full documentation is available at [sharkpy.readthedocs.io](https://sharkpy.readthedocs.io/)
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Acknowledgments
- Built with scikit-learn, XGBoost, and other amazing open-source tools
- Inspired by making machine learning more accessible and fun
## Contact
- Author: Ezz Eldin Ahmed
- Email: ezzeldinahmad96@gmail.com
- GitHub: [Ezzio11](https://github.com/Ezzio11)
---
Made with 🦈 by SharkPy Team
Raw data
{
"_id": null,
"home_page": null,
"name": "sharkpy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Ezz Eldin Ahmed <ezzeldinahmad96@gmail.com>",
"keywords": "automated ml, data science, education, machine learning, model comparison, reporting, visualization",
"author": null,
"author_email": "Ezz Eldin Ahmed <ezzeldinahmad96@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/e6/ef/d8287680ae0f01ec0514f868e6669358ef4bcb32546361f8bea5e4b362e9/sharkpy-1.0.0.tar.gz",
"platform": null,
"description": "# \ud83e\udd88 SharkPy\n\nA friendly machine learning framework with shark-themed feedback! SharkPy simplifies the machine learning workflow while making it fun and educational.\n\n## Features\n\n- **Model Battle Arena**: Compare multiple models automatically\n- **Smart Reporting**: Generate reports in TXT, PDF, and DOCX formats\n- **Interactive Visualization**: Beautiful plots with shark-themed styling\n- **Model Explanations**: Clear explanations of model behavior\n- **Automated Optimization**: Hyperparameter tuning with Optuna\n- **Shapash Integration**: Interactive dashboards for model interpretation\n\n## Quick Start\n\n### Installation\n\n```bash\n# Basic installation\npip install sharkpy\n\n# Full installation (includes LightGBM and CatBoost)\npip install sharkpy[full]\n\n# Development installation\npip install sharkpy[dev]\n```\n\n### Basic Usage\n\n```python\nfrom sharkpy import Shark\nimport pandas as pd\n\n# Create a Shark instance\nshark = Shark()\n\n# Load your data\ndata = pd.read_csv('your_data.csv')\n\n# Train a model\nshark.learn(\n data=data,\n target='target_column',\n model_choice='random_forest'\n)\n\n# Make predictions\npredictions = shark.predict(new_data)\n\n# Generate reports\nshark.report(export_path='report.pdf', format='pdf')\n```\n\n### Model Battle Example\n\n```python\n# Define models to compete\nmodels = [\n 'linear_regression',\n 'random_forest',\n 'xgboost',\n 'lightgbm',\n 'catboost'\n]\n\n# Let them battle!\nbattle_results = shark.battle(\n data=data,\n target='target_column',\n models=models,\n metric='r2'\n)\n\n# Get the champion\nprint(f\"Winner: {battle_results['champion']}\")\nprint(f\"Score: {battle_results['score']:.4f}\")\n```\n\n## Supported Models\n\n- Linear Regression\n- Logistic Regression\n- Random Forest\n- Support Vector Machines\n- Ridge Regression\n- Lasso Regression\n- K-Nearest Neighbors\n- XGBoost\n- LightGBM (with full installation)\n- CatBoost (with full installation)\n\n## Reports\n\nSharkPy can generate comprehensive reports in multiple formats:\n\n```python\n# Text report\nshark.report(export_path='report.txt', format='txt')\n\n# PDF report (requires MS Word or LibreOffice)\nshark.report(export_path='report.pdf', format='pdf')\n\n# Word document\nshark.report(export_path='report.docx', format='docx')\n```\n\n## Visualizations\n\n```python\n# Prediction plot\nshark.plot(kind=\"prediction\")\n\n# Feature importance\nshark.plot(kind=\"feature_importance\")\n\n# Interactive Shapash dashboard\nshark.explain_with_shapash()\n```\n\n## Model Explanations\n\n```python\n# Get friendly explanations of your model\nshark.explain()\n\n# Create interactive Shapash dashboard\nshark.explain_with_shapash(title_story=\"My Analysis\")\n```\n\n## Save & Load Models\n\n```python\n# Save your model\nshark.save_model(name=\"my_model\")\n\n# Load a saved model\nshark.load_model(\"models/my_model.joblib\")\n```\n\n## Development\n\n```bash\n# Install development dependencies\npip install sharkpy[dev]\n\n# Run tests\npytest\n\n# Format code\nblack sharkpy/\n```\n\n## Documentation\n\nFull documentation is available at [sharkpy.readthedocs.io](https://sharkpy.readthedocs.io/)\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Acknowledgments\n\n- Built with scikit-learn, XGBoost, and other amazing open-source tools\n- Inspired by making machine learning more accessible and fun\n\n## Contact\n\n- Author: Ezz Eldin Ahmed\n- Email: ezzeldinahmad96@gmail.com\n- GitHub: [Ezzio11](https://github.com/Ezzio11)\n\n---\n\nMade with \ud83e\udd88 by SharkPy Team",
"bugtrack_url": null,
"license": null,
"summary": "A friendly machine learning framework with shark-themed feedback \ud83e\udd88",
"version": "1.0.0",
"project_urls": {
"Changelog": "https://github.com/Ezzio11/sharkpy/blob/main/CHANGELOG.md",
"Documentation": "https://sharkpy.readthedocs.io/",
"Homepage": "https://github.com/Ezzio11/sharkpy",
"Issues": "https://github.com/Ezzio11/sharkpy/issues",
"Repository": "https://github.com/Ezzio11/sharkpy.git"
},
"split_keywords": [
"automated ml",
" data science",
" education",
" machine learning",
" model comparison",
" reporting",
" visualization"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "b56d88ba56980e9f54cb836e6d81cf7e37187af1a150a2316bd54ea9d5f2fbe3",
"md5": "ff9bff3d1520f967667040f1307045a9",
"sha256": "e88abf573a7a3048c930c41c1573976a5d9fffce87a7f350cb2158f287e7001b"
},
"downloads": -1,
"filename": "sharkpy-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ff9bff3d1520f967667040f1307045a9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 35231,
"upload_time": "2025-08-21T16:51:04",
"upload_time_iso_8601": "2025-08-21T16:51:04.083885Z",
"url": "https://files.pythonhosted.org/packages/b5/6d/88ba56980e9f54cb836e6d81cf7e37187af1a150a2316bd54ea9d5f2fbe3/sharkpy-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e6efd8287680ae0f01ec0514f868e6669358ef4bcb32546361f8bea5e4b362e9",
"md5": "c9b5b6578fe33a2e9a04619584da5a93",
"sha256": "8731c5f08c38aa159fbe652e2b42ce96fcf6a62900d9dae12444eb9bfa73b8b9"
},
"downloads": -1,
"filename": "sharkpy-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "c9b5b6578fe33a2e9a04619584da5a93",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 2369346,
"upload_time": "2025-08-21T16:51:13",
"upload_time_iso_8601": "2025-08-21T16:51:13.967496Z",
"url": "https://files.pythonhosted.org/packages/e6/ef/d8287680ae0f01ec0514f868e6669358ef4bcb32546361f8bea5e4b362e9/sharkpy-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-21 16:51:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Ezzio11",
"github_project": "sharkpy",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "pandas",
"specs": [
[
">=",
"1.3.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.19.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
">=",
"0.24.0"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.4.0"
]
]
},
{
"name": "seaborn",
"specs": [
[
">=",
"0.11.0"
]
]
},
{
"name": "statsmodels",
"specs": [
[
">=",
"0.12.0"
]
]
},
{
"name": "joblib",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "optuna",
"specs": [
[
">=",
"2.8.0"
]
]
},
{
"name": "xgboost",
"specs": [
[
">=",
"1.4.0"
]
]
},
{
"name": "shapash",
"specs": [
[
">=",
"2.0.0"
]
]
},
{
"name": "python-docx",
"specs": [
[
">=",
"0.8.11"
]
]
},
{
"name": "docx2pdf",
"specs": [
[
">=",
"0.1.8"
]
]
}
],
"lcname": "sharkpy"
}