<div align="center">
<img src="https://raw.githubusercontent.com/scarletkc/vexor/refs/heads/main/assets/vexor.svg" alt="Vexor" width="50%" height="auto">
# Vexor
[](https://www.python.org/downloads/)
[](https://pypi.org/project/vexor/)
[](https://github.com/scarletkc/vexor/actions/workflows/publish.yml)
[](https://codecov.io/github/scarletkc/vexor)
[](https://github.com/scarletkc/vexor/blob/main/LICENSE)
</div>
---
Vexor is a vector-powered CLI for semantic file search. It supports configurable remote embedding models and ranks results by cosine similarity.
## Usage
Vexor is designed to work seamlessly with both humans and AI coding assistants through the terminal, enabling semantic file search in autonomous agent workflows.
When you remember what a file does but forget its name or location, Vexor's semantic search finds it instantly—no grep patterns or directory traversal needed.
## Install
Download from [releases](https://github.com/scarletkc/vexor/releases) without python, or with:
```bash
pip install vexor # or use pipx, uv
```
The CLI entry point is `vexor`.
## Configure
Set the Gemini API key once and reuse it everywhere:
```bash
vexor config --set-api-key "YOUR_KEY"
```
Optional defaults:
```bash
vexor config --set-model gemini-embedding-001
vexor config --set-batch-size 0 # 0 = single request
vexor config --set-provider gemini
vexor config --set-base-url https://proxy.example.com # optional proxy support for local LM Studio and similar tools; use --clear-base-url to reset
```
Provider defaults to `gemini`, so you only need to override it when switching to other backends (e.g., `openai`). Base URLs are optional and let you route requests through a custom proxy; run `vexor config --clear-base-url` to return to the official endpoint.
Environment/API keys can be supplied via `vexor config --set-api-key`, `VEXOR_API_KEY`, or provider-specific variables (`GOOGLE_GENAI_API_KEY`, `OPENAI_API_KEY`). Example OpenAI setup:
```bash
vexor config --set-provider openai
vexor config --set-model text-embedding-3-small
export OPENAI_API_KEY="sk-..." # or use vexor config --set-api-key
```
Configuration is stored in `~/.vexor/config.json`.
Inspect or reset every cached index:
```bash
vexor config --show-index-all
vexor config --clear-index-all
```
## Workflow
1. **Index** the project root (includes every subdirectory):
```bash
vexor index --path ~/projects/demo --mode name --include-hidden
```
2. **Search** from anywhere, pointing to the same path:
```bash
vexor search "api client config" --path ~/projects/demo --mode name --top 5
```
Output example:
```
Vexor semantic file search results
──────────────────────────────────
# Similarity File path Preview
1 0.923 ./src/config_loader.py config loader entrypoint
2 0.871 ./src/utils/config_parse.py parse config helpers
3 0.809 ./tests/test_config_loader.py tests for config loader
```
Tips:
- Keep one index per project root; subdirectories need separate indexes only if you explicitly run `vexor index` on them.
- Toggle `--no-recursive` (or `-n`) on both `index` and `search` when you only care about the current directory; recursive and non-recursive caches are stored separately.
- Hidden files are included only if both `index` and `search` use `--include-hidden`.
- Use `--ext`/`-e` (repeatable) on both `index` and `search` to limit indexing and search results to specific extensions, e.g. `--ext .py --ext .md`.
- Re-running `vexor index` only re-embeds files whose names changed (or were added/removed); if more than half the files differ, it automatically falls back to a full rebuild for consistency.
- Specify the indexing mode with `--mode`:
- `name`: embed only the file name (fastest, zero content reads).
- `head`: grab the first snippet of supported text/code/PDF/DOCX/PPTX files for lightweight semantic context.
- `brief`: summarize PRDs/high-frequency keywords (English/Chinese) in requirements documents enable quick location of key requirements.
- `full`: chunk the entire contents of supported text/code/PDF/DOCX/PPTX files into windows so long documents stay searchable end-to-end.
- Switch embedding providers (Gemini by default, OpenAI format supported) via `vexor config --set-provider PROVIDER` and pick a matching embedding model.
## Commands
| Command | Description |
| ------- | ----------- |
| `vexor index --path PATH --mode MODE [--include-hidden] [--no-recursive] [--ext EXT ...] [--clear/--show]` | Scans `PATH` (recursively by default), embeds content according to `MODE` (`name`, `head`, or `full`), and writes a cache under `~/.vexor`. |
| `vexor search QUERY --path PATH --mode MODE [--top K] [--include-hidden] [--no-recursive] [--ext EXT ...]` | Loads the cached embeddings for `PATH` (matching the chosen mode/recursion/hidden settings), shows matches for `QUERY`. |
| `vexor doctor` | Checks whether the `vexor` command is available on the current `PATH`. |
| `vexor update` | Fetches the latest release version and shows links to update via GitHub or PyPI. |
| `vexor config --set-api-key/--clear-api-key` | Manage the stored API key (Gemini by default). |
| `vexor config --set-model/--set-batch-size/--show` | Manage default model, batch size, and inspect current settings. |
| `vexor config --set-provider/--set-base-url/--clear-base-url` | Switch embedding providers and optionally override the remote base URL. |
| `vexor config --show-index-all/--clear-index-all` | Inspect or delete every cached index regardless of path/mode. |
## Documentation
See the [docs](https://github.com/scarletkc/vexor/tree/main/docs) for more details.
Contributions, issues, and PRs are all welcome!
Star this repo if you find it helpful!
## License
This project is licensed under the [MIT](http://github.com/scarletkc/vexor/blob/main/LICENSE) License.
Raw data
{
"_id": null,
"home_page": null,
"name": "vexor",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "ai, cli, file, semantic-search, typer, vector",
"author": "scarletkc",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/ab/f8/aa1f3c99cbd21672afe480a04edfe1acbd849357fc488051d5505ef50dc4/vexor-0.6.1.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n\n<img src=\"https://raw.githubusercontent.com/scarletkc/vexor/refs/heads/main/assets/vexor.svg\" alt=\"Vexor\" width=\"50%\" height=\"auto\">\n\n# Vexor\n\n[](https://www.python.org/downloads/)\n[](https://pypi.org/project/vexor/)\n[](https://github.com/scarletkc/vexor/actions/workflows/publish.yml)\n[](https://codecov.io/github/scarletkc/vexor)\n[](https://github.com/scarletkc/vexor/blob/main/LICENSE)\n\n</div>\n\n---\n\nVexor is a vector-powered CLI for semantic file search. It supports configurable remote embedding models and ranks results by cosine similarity.\n\n## Usage\nVexor is designed to work seamlessly with both humans and AI coding assistants through the terminal, enabling semantic file search in autonomous agent workflows.\n\nWhen you remember what a file does but forget its name or location, Vexor's semantic search finds it instantly\u2014no grep patterns or directory traversal needed.\n\n## Install\nDownload from [releases](https://github.com/scarletkc/vexor/releases) without python, or with:\n```bash\npip install vexor # or use pipx, uv\n```\nThe CLI entry point is `vexor`.\n\n## Configure\nSet the Gemini API key once and reuse it everywhere:\n```bash\nvexor config --set-api-key \"YOUR_KEY\"\n```\nOptional defaults:\n```bash\nvexor config --set-model gemini-embedding-001\nvexor config --set-batch-size 0 # 0 = single request\nvexor config --set-provider gemini\nvexor config --set-base-url https://proxy.example.com # optional proxy support for local LM Studio and similar tools; use --clear-base-url to reset\n```\nProvider defaults to `gemini`, so you only need to override it when switching to other backends (e.g., `openai`). Base URLs are optional and let you route requests through a custom proxy; run `vexor config --clear-base-url` to return to the official endpoint.\n\nEnvironment/API keys can be supplied via `vexor config --set-api-key`, `VEXOR_API_KEY`, or provider-specific variables (`GOOGLE_GENAI_API_KEY`, `OPENAI_API_KEY`). Example OpenAI setup:\n```bash\nvexor config --set-provider openai\nvexor config --set-model text-embedding-3-small\nexport OPENAI_API_KEY=\"sk-...\" # or use vexor config --set-api-key\n```\nConfiguration is stored in `~/.vexor/config.json`.\n\nInspect or reset every cached index:\n```bash\nvexor config --show-index-all\nvexor config --clear-index-all\n```\n\n## Workflow\n1. **Index** the project root (includes every subdirectory):\n ```bash\n vexor index --path ~/projects/demo --mode name --include-hidden\n ```\n2. **Search** from anywhere, pointing to the same path:\n ```bash\n vexor search \"api client config\" --path ~/projects/demo --mode name --top 5\n ```\n Output example:\n ```\n Vexor semantic file search results\n \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n # Similarity File path Preview\n 1 0.923 ./src/config_loader.py config loader entrypoint\n 2 0.871 ./src/utils/config_parse.py parse config helpers\n 3 0.809 ./tests/test_config_loader.py tests for config loader\n ```\n\nTips:\n- Keep one index per project root; subdirectories need separate indexes only if you explicitly run `vexor index` on them.\n- Toggle `--no-recursive` (or `-n`) on both `index` and `search` when you only care about the current directory; recursive and non-recursive caches are stored separately.\n- Hidden files are included only if both `index` and `search` use `--include-hidden`.\n- Use `--ext`/`-e` (repeatable) on both `index` and `search` to limit indexing and search results to specific extensions, e.g. `--ext .py --ext .md`.\n- Re-running `vexor index` only re-embeds files whose names changed (or were added/removed); if more than half the files differ, it automatically falls back to a full rebuild for consistency.\n- Specify the indexing mode with `--mode`:\n - `name`: embed only the file name (fastest, zero content reads).\n - `head`: grab the first snippet of supported text/code/PDF/DOCX/PPTX files for lightweight semantic context.\n - `brief`: summarize PRDs/high-frequency keywords (English/Chinese) in requirements documents enable quick location of key requirements.\n - `full`: chunk the entire contents of supported text/code/PDF/DOCX/PPTX files into windows so long documents stay searchable end-to-end.\n- Switch embedding providers (Gemini by default, OpenAI format supported) via `vexor config --set-provider PROVIDER` and pick a matching embedding model.\n\n## Commands\n| Command | Description |\n| ------- | ----------- |\n| `vexor index --path PATH --mode MODE [--include-hidden] [--no-recursive] [--ext EXT ...] [--clear/--show]` | Scans `PATH` (recursively by default), embeds content according to `MODE` (`name`, `head`, or `full`), and writes a cache under `~/.vexor`. |\n| `vexor search QUERY --path PATH --mode MODE [--top K] [--include-hidden] [--no-recursive] [--ext EXT ...]` | Loads the cached embeddings for `PATH` (matching the chosen mode/recursion/hidden settings), shows matches for `QUERY`. |\n| `vexor doctor` | Checks whether the `vexor` command is available on the current `PATH`. |\n| `vexor update` | Fetches the latest release version and shows links to update via GitHub or PyPI. |\n| `vexor config --set-api-key/--clear-api-key` | Manage the stored API key (Gemini by default). |\n| `vexor config --set-model/--set-batch-size/--show` | Manage default model, batch size, and inspect current settings. |\n| `vexor config --set-provider/--set-base-url/--clear-base-url` | Switch embedding providers and optionally override the remote base URL. |\n| `vexor config --show-index-all/--clear-index-all` | Inspect or delete every cached index regardless of path/mode. |\n\n## Documentation\nSee the [docs](https://github.com/scarletkc/vexor/tree/main/docs) for more details.\n\nContributions, issues, and PRs are all welcome!\n\nStar this repo if you find it helpful!\n\n## License\nThis project is licensed under the [MIT](http://github.com/scarletkc/vexor/blob/main/LICENSE) License.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A vector-powered CLI for semantic search over files.",
"version": "0.6.1",
"project_urls": {
"Repository": "https://github.com/scarletkc/vexor"
},
"split_keywords": [
"ai",
" cli",
" file",
" semantic-search",
" typer",
" vector"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "44250df40cfb97286f62223af705d089f323f134369ca6c04003c1603639f323",
"md5": "10ab1fa03a7af70b6e387b46cc9dda32",
"sha256": "8588ce010a2e216c19c463344566fc68c210a9028aeb85fc1cc5c70746c92955"
},
"downloads": -1,
"filename": "vexor-0.6.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "10ab1fa03a7af70b6e387b46cc9dda32",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 35491,
"upload_time": "2025-11-11T13:50:13",
"upload_time_iso_8601": "2025-11-11T13:50:13.252899Z",
"url": "https://files.pythonhosted.org/packages/44/25/0df40cfb97286f62223af705d089f323f134369ca6c04003c1603639f323/vexor-0.6.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "abf8aa1f3c99cbd21672afe480a04edfe1acbd849357fc488051d5505ef50dc4",
"md5": "93ab7ceac6da154964efb99d40df416e",
"sha256": "fc173471049a50ec1b4998a0357030a6d9dac25437094e58acfc07e9cb4ba43b"
},
"downloads": -1,
"filename": "vexor-0.6.1.tar.gz",
"has_sig": false,
"md5_digest": "93ab7ceac6da154964efb99d40df416e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 27627,
"upload_time": "2025-11-11T13:50:14",
"upload_time_iso_8601": "2025-11-11T13:50:14.343464Z",
"url": "https://files.pythonhosted.org/packages/ab/f8/aa1f3c99cbd21672afe480a04edfe1acbd849357fc488051d5505ef50dc4/vexor-0.6.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-11-11 13:50:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "scarletkc",
"github_project": "vexor",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "google-genai",
"specs": [
[
">=",
"0.5.0"
]
]
},
{
"name": "openai",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "python-dotenv",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
">=",
"1.3.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.23.0"
]
]
},
{
"name": "typer",
"specs": [
[
">=",
"0.9.0"
]
]
},
{
"name": "rich",
"specs": [
[
">=",
"13.0.0"
]
]
},
{
"name": "charset-normalizer",
"specs": [
[
">=",
"3.3.0"
]
]
},
{
"name": "pypdf",
"specs": [
[
">=",
"4.0.0"
]
]
},
{
"name": "python-docx",
"specs": [
[
">=",
"0.8.11"
]
]
},
{
"name": "python-pptx",
"specs": [
[
">=",
"0.6.21"
]
]
},
{
"name": "pytest",
"specs": [
[
">=",
"7.4"
]
]
},
{
"name": "pytest-cov",
"specs": [
[
">=",
"4.1"
]
]
},
{
"name": "build",
"specs": [
[
">=",
"1.2.1"
]
]
},
{
"name": "twine",
"specs": [
[
">=",
"5.1.1"
]
]
}
],
"lcname": "vexor"
}