<div align="center">
<h2>
Yolov7-Pip: Packaged version of the Yolov7 repository
</h2>
<h4>
<img width="500" alt="teaser" src="docs/paper.png">
</h4>
</div>
## <div align="center">Overview</div>
This repo is a packaged version of the [Yolov7](https://github.com/WongKinYiu/yolov7) model.
### Installation
```
pip install yolov7detect
```
### Yolov7 Inference
```python
import yolov7
# load pretrained or custom model
model = yolov7.load('yolov7.pt')
# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.classes = None # (optional list) filter by class
# set image
imgs = 'inference/images'
# perform inference
results = model(imgs)
# inference with larger input size and test time augmentation
results = model(img, size=1280, augment=True)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# show detection bounding boxes on image
results.show()
```
### Citation
```bibtex
@article{wang2022yolov7,
title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
journal={arXiv preprint arXiv:2207.02696},
year={2022}
}
```
### Acknowledgement
A part of the code is borrowed from [Yolov5-pip](https://github.com/fcakyon/yolov5-pip). Many thanks for their wonderful works.
Raw data
{
"_id": null,
"home_page": "https://github.com/akashAD98/yolov7-pip-1",
"name": "yolov7-easy",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "machine-learning,deep-learning,pytorch,vision,image-classification,object-detection,yolov7,detector,yolov5",
"author": "AkashDesai",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/d2/51/deb95fd25532bdddc549a5c8f389c16051026c58e7dc1617c60d97d71cc9/yolov7_easy-0.0.1.tar.gz",
"platform": null,
"description": "<div align=\"center\">\r\n<h2>\r\n Yolov7-Pip: Packaged version of the Yolov7 repository \r\n</h2>\r\n<h4>\r\n <img width=\"500\" alt=\"teaser\" src=\"docs/paper.png\">\r\n</h4>\r\n</div>\r\n\r\n## <div align=\"center\">Overview</div>\r\n\r\nThis repo is a packaged version of the [Yolov7](https://github.com/WongKinYiu/yolov7) model.\r\n### Installation\r\n```\r\npip install yolov7detect\r\n```\r\n\r\n### Yolov7 Inference\r\n```python\r\nimport yolov7\r\n\r\n# load pretrained or custom model\r\nmodel = yolov7.load('yolov7.pt')\r\n\r\n# set model parameters\r\nmodel.conf = 0.25 # NMS confidence threshold\r\nmodel.iou = 0.45 # NMS IoU threshold\r\nmodel.classes = None # (optional list) filter by class\r\n\r\n# set image\r\nimgs = 'inference/images'\r\n\r\n# perform inference\r\nresults = model(imgs)\r\n\r\n# inference with larger input size and test time augmentation\r\nresults = model(img, size=1280, augment=True)\r\n\r\n# parse results\r\npredictions = results.pred[0]\r\nboxes = predictions[:, :4] # x1, y1, x2, y2\r\nscores = predictions[:, 4]\r\ncategories = predictions[:, 5]\r\n\r\n# show detection bounding boxes on image\r\nresults.show()\r\n```\r\n### Citation\r\n```bibtex\r\n@article{wang2022yolov7,\r\n title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},\r\n author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},\r\n journal={arXiv preprint arXiv:2207.02696},\r\n year={2022}\r\n}\r\n```\r\n### Acknowledgement\r\nA part of the code is borrowed from [Yolov5-pip](https://github.com/fcakyon/yolov5-pip). Many thanks for their wonderful works.\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Packaged version of the Yolov7 repository",
"version": "0.0.1",
"split_keywords": [
"machine-learning",
"deep-learning",
"pytorch",
"vision",
"image-classification",
"object-detection",
"yolov7",
"detector",
"yolov5"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "2cddcd9bcfe402771255d51d61aabaa6",
"sha256": "619aebf99ab298dd2f1035d0c124b3a3ce7de40d31bef453519944d1f5fcdf12"
},
"downloads": -1,
"filename": "yolov7_easy-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "2cddcd9bcfe402771255d51d61aabaa6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 122881,
"upload_time": "2022-12-20T14:57:25",
"upload_time_iso_8601": "2022-12-20T14:57:25.457387Z",
"url": "https://files.pythonhosted.org/packages/d2/51/deb95fd25532bdddc549a5c8f389c16051026c58e7dc1617c60d97d71cc9/yolov7_easy-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-20 14:57:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "akashAD98",
"github_project": "yolov7-pip-1",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "matplotlib",
"specs": [
[
">=",
"3.2.2"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.18.5"
]
]
},
{
"name": "opencv-python",
"specs": [
[
">=",
"4.1.1"
]
]
},
{
"name": "Pillow",
"specs": [
[
">=",
"7.1.2"
]
]
},
{
"name": "PyYAML",
"specs": [
[
">=",
"5.3.1"
]
]
},
{
"name": "requests",
"specs": [
[
">=",
"2.23.0"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.4.1"
]
]
},
{
"name": "torch",
"specs": [
[
">=",
"1.7.0"
],
[
"!=",
"1.12.0"
]
]
},
{
"name": "torchvision",
"specs": [
[
"!=",
"0.13.0"
],
[
">=",
"0.8.1"
]
]
},
{
"name": "tqdm",
"specs": [
[
">=",
"4.41.0"
]
]
},
{
"name": "protobuf",
"specs": [
[
"<",
"4.21.3"
]
]
},
{
"name": "tensorboard",
"specs": [
[
">=",
"2.4.1"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"1.1.4"
]
]
},
{
"name": "seaborn",
"specs": [
[
">=",
"0.11.0"
]
]
},
{
"name": "ipython",
"specs": []
},
{
"name": "psutil",
"specs": []
},
{
"name": "thop",
"specs": []
},
{
"name": "huggingface-hub",
"specs": [
[
">=",
"0.11.1"
]
]
}
],
"lcname": "yolov7-easy"
}