yolov7-easy


Nameyolov7-easy JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/akashAD98/yolov7-pip-1
SummaryPackaged version of the Yolov7 repository
upload_time2022-12-20 14:57:25
maintainer
docs_urlNone
authorAkashDesai
requires_python>=3.6
licenseMIT
keywords machine-learning deep-learning pytorch vision image-classification object-detection yolov7 detector yolov5
VCS
bugtrack_url
requirements matplotlib numpy opencv-python Pillow PyYAML requests scipy torch torchvision tqdm protobuf tensorboard pandas seaborn ipython psutil thop huggingface-hub
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<h2>
  Yolov7-Pip: Packaged version of the Yolov7 repository  
</h2>
<h4>
    <img width="500" alt="teaser" src="docs/paper.png">
</h4>
</div>

## <div align="center">Overview</div>

This repo is a packaged version of the [Yolov7](https://github.com/WongKinYiu/yolov7) model.
### Installation
```
pip install yolov7detect
```

### Yolov7 Inference
```python
import yolov7

# load pretrained or custom model
model = yolov7.load('yolov7.pt')

# set model parameters
model.conf = 0.25  # NMS confidence threshold
model.iou = 0.45  # NMS IoU threshold
model.classes = None  # (optional list) filter by class

# set image
imgs = 'inference/images'

# perform inference
results = model(imgs)

# inference with larger input size and test time augmentation
results = model(img, size=1280, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()
```
### Citation
```bibtex
@article{wang2022yolov7,
  title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
  author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
  journal={arXiv preprint arXiv:2207.02696},
  year={2022}
}
```
### Acknowledgement
A part of the code is borrowed from [Yolov5-pip](https://github.com/fcakyon/yolov5-pip). Many thanks for their wonderful works.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/akashAD98/yolov7-pip-1",
    "name": "yolov7-easy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "machine-learning,deep-learning,pytorch,vision,image-classification,object-detection,yolov7,detector,yolov5",
    "author": "AkashDesai",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/d2/51/deb95fd25532bdddc549a5c8f389c16051026c58e7dc1617c60d97d71cc9/yolov7_easy-0.0.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\r\n<h2>\r\n  Yolov7-Pip: Packaged version of the Yolov7 repository  \r\n</h2>\r\n<h4>\r\n    <img width=\"500\" alt=\"teaser\" src=\"docs/paper.png\">\r\n</h4>\r\n</div>\r\n\r\n## <div align=\"center\">Overview</div>\r\n\r\nThis repo is a packaged version of the [Yolov7](https://github.com/WongKinYiu/yolov7) model.\r\n### Installation\r\n```\r\npip install yolov7detect\r\n```\r\n\r\n### Yolov7 Inference\r\n```python\r\nimport yolov7\r\n\r\n# load pretrained or custom model\r\nmodel = yolov7.load('yolov7.pt')\r\n\r\n# set model parameters\r\nmodel.conf = 0.25  # NMS confidence threshold\r\nmodel.iou = 0.45  # NMS IoU threshold\r\nmodel.classes = None  # (optional list) filter by class\r\n\r\n# set image\r\nimgs = 'inference/images'\r\n\r\n# perform inference\r\nresults = model(imgs)\r\n\r\n# inference with larger input size and test time augmentation\r\nresults = model(img, size=1280, augment=True)\r\n\r\n# parse results\r\npredictions = results.pred[0]\r\nboxes = predictions[:, :4] # x1, y1, x2, y2\r\nscores = predictions[:, 4]\r\ncategories = predictions[:, 5]\r\n\r\n# show detection bounding boxes on image\r\nresults.show()\r\n```\r\n### Citation\r\n```bibtex\r\n@article{wang2022yolov7,\r\n  title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},\r\n  author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},\r\n  journal={arXiv preprint arXiv:2207.02696},\r\n  year={2022}\r\n}\r\n```\r\n### Acknowledgement\r\nA part of the code is borrowed from [Yolov5-pip](https://github.com/fcakyon/yolov5-pip). Many thanks for their wonderful works.\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Packaged version of the Yolov7 repository",
    "version": "0.0.1",
    "split_keywords": [
        "machine-learning",
        "deep-learning",
        "pytorch",
        "vision",
        "image-classification",
        "object-detection",
        "yolov7",
        "detector",
        "yolov5"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "2cddcd9bcfe402771255d51d61aabaa6",
                "sha256": "619aebf99ab298dd2f1035d0c124b3a3ce7de40d31bef453519944d1f5fcdf12"
            },
            "downloads": -1,
            "filename": "yolov7_easy-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "2cddcd9bcfe402771255d51d61aabaa6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 122881,
            "upload_time": "2022-12-20T14:57:25",
            "upload_time_iso_8601": "2022-12-20T14:57:25.457387Z",
            "url": "https://files.pythonhosted.org/packages/d2/51/deb95fd25532bdddc549a5c8f389c16051026c58e7dc1617c60d97d71cc9/yolov7_easy-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-20 14:57:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "akashAD98",
    "github_project": "yolov7-pip-1",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.2.2"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.18.5"
                ]
            ]
        },
        {
            "name": "opencv-python",
            "specs": [
                [
                    ">=",
                    "4.1.1"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    ">=",
                    "7.1.2"
                ]
            ]
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    ">=",
                    "5.3.1"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.23.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.4.1"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.7.0"
                ],
                [
                    "!=",
                    "1.12.0"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    "!=",
                    "0.13.0"
                ],
                [
                    ">=",
                    "0.8.1"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    ">=",
                    "4.41.0"
                ]
            ]
        },
        {
            "name": "protobuf",
            "specs": [
                [
                    "<",
                    "4.21.3"
                ]
            ]
        },
        {
            "name": "tensorboard",
            "specs": [
                [
                    ">=",
                    "2.4.1"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.1.4"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.11.0"
                ]
            ]
        },
        {
            "name": "ipython",
            "specs": []
        },
        {
            "name": "psutil",
            "specs": []
        },
        {
            "name": "thop",
            "specs": []
        },
        {
            "name": "huggingface-hub",
            "specs": [
                [
                    ">=",
                    "0.11.1"
                ]
            ]
        }
    ],
    "lcname": "yolov7-easy"
}
        
Elapsed time: 0.02844s