jaygoga-orchestra


Namejaygoga-orchestra JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/AIMLDev726/jaygoga_orchestra
SummaryJayGoga-Orchestra - Advanced AI Agent Orchestration Framework
upload_time2025-08-30 19:35:24
maintainerNone
docs_urlNone
authorAIMLDev726
requires_python>=3.8
licenseMIT
keywords ai agents workflow automation llm orchestration jaygoga
VCS
bugtrack_url
requirements pydantic openai litellm instructor pdfplumber regex opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp-proto-http chromadb tokenizers onnxruntime openpyxl pyvis python-dotenv pyjwt click appdirs jsonref json-repair uv tomli-w tomli blinker json5 portalocker rich typing-extensions requests anthropic langchain langchain-community langchain-openai tiktoken tenacity PyYAML jsonschema sqlalchemy aiofiles httpx aiohttp pandas numpy pypdf python-docx markdown pgvector qdrant-client pinecone-client weaviate-client sentence-transformers huggingface-hub asyncio
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # JayGoga-Orchestra ๐ŸŽผ - Advanced AI Agent Orchestration Framework

**JayGoga-Orchestra** is a powerful AI agent orchestration framework for intelligent automation. It provides seamless coordination of AI agents for complex workflows and enterprise-grade automation solutions.

## ๐ŸŒŸ Features

- **๐ŸŽญ Dual Architecture**: Choose between Classical (v1) and Modern (v2) orchestration patterns
- **๐Ÿ”ฎ Intelligent Orchestration**: Advanced agent coordination and workflow management
- **โšก High Performance**: Optimized for speed and scalability
- **๐Ÿ›ก๏ธ Enterprise Ready**: Built for production environments
- **๐ŸŽจ Flexible Design**: Adapt to any AI workflow requirement
- **๐Ÿ“š Rich Documentation**: Comprehensive guides and examples
- **๐Ÿ”„ Seamless Integration**: Easy integration with existing systems

## ๐Ÿš€ Installation

```bash
pip install jaygoga-orchestra
```

## ๐ŸŽฏ Quick Start

### ๐Ÿ›๏ธ Classical Orchestration (v1) - Structured & Reliable

Perfect for **structured workflows**, **enterprise environments**, and **predictable processes**.

```python
from jaygoga_orchestra.v1 import Agent, Task, Squad, Process

# Create specialized agents
analyst = Agent(
    role="Senior Data Analyst",
    goal="Extract meaningful insights from complex datasets",
    backstory="You are a seasoned analyst with 10+ years of experience in data science and business intelligence."
)

researcher = Agent(
    role="Market Researcher",
    goal="Gather comprehensive market intelligence",
    backstory="You specialize in market analysis and competitive intelligence gathering."
)

# Define specific tasks
analysis_task = Task(
    description="Analyze Q4 sales data and identify key trends, patterns, and anomalies",
    agent=analyst,
    expected_output="Detailed analysis report with visualizations and recommendations"
)

research_task = Task(
    description="Research market conditions and competitor performance in Q4",
    agent=researcher,
    expected_output="Market intelligence report with competitor analysis"
)

# Create coordinated squad
intelligence_squad = Squad(
    agents=[analyst, researcher],
    tasks=[analysis_task, research_task],
    process=Process.sequential,
    verbose=True
)

# Execute the orchestrated workflow
results = intelligence_squad.execute()
print(f"Analysis Complete: {results}")
```

### ๐Ÿš€ Modern Orchestration (v2) - Dynamic & Intelligent

Ideal for **adaptive workflows**, **AI-driven decisions**, and **dynamic environments**.

```python
from jaygoga_orchestra.v2 import Agent, Team, Workflow

# Create intelligent agents with advanced capabilities
data_agent = Agent(
    name="JayGoga_DataSage",
    description="Advanced AI agent specialized in data analysis with deep learning capabilities",
    instructions="You are an expert data scientist with the ability to adapt your analysis approach based on data characteristics",
    model="gpt-4",
    tools=["python_interpreter", "data_visualization", "statistical_analysis"]
)

insight_agent = Agent(
    name="JayGoga_InsightMaster",
    description="Strategic insight generator with business acumen",
    instructions="Transform data findings into actionable business strategies and recommendations",
    model="claude-3-sonnet",
    tools=["business_analysis", "report_generation", "strategic_planning"]
)

# Create dynamic team with shared context
intelligence_team = Team(
    agents=[data_agent, insight_agent],
    name="Strategic Intelligence Unit",
    description="Elite team for comprehensive business intelligence",
    shared_memory=True,
    collaboration_mode="adaptive"
)


# Execute with dynamic adaptation
results = intelligence_team.run(
    task="Analyze our Q4 performance data and provide strategic recommendations for Q1",
    context={"data_source": "sales_db", "priority": "high", "deadline": "2024-01-15"}
)

print(f"Strategic Analysis: {results.summary}")
print(f"Key Insights: {results.insights}")
print(f"Recommendations: {results.recommendations}")
```

## ๐Ÿ—๏ธ Architecture Comparison

| Feature | Classical v1 | Modern v2 | Best For |
|---------|-------------|-----------|----------|
| **Structure** | Hierarchical, Role-based | Dynamic, Capability-based | v1: Enterprise, v2: Startups |
| **Execution** | Sequential/Parallel | Adaptive Intelligence | v1: Predictable, v2: Creative |
| **Memory** | Task-scoped | Shared Context | v1: Privacy, v2: Collaboration |
| **Scalability** | Linear | Exponential | v1: Controlled, v2: Rapid growth |
| **Learning** | Rule-based | AI-driven | v1: Compliance, v2: Innovation |
| **Complexity** | Structured | Self-organizing | v1: Governance, v2: Agility |

### ๐ŸŽญ When to Choose Which Version

**Choose Classical v1 when:**
- ๐Ÿข Enterprise environment with strict governance
- ๐Ÿ“‹ Well-defined, repeatable processes
- ๐Ÿ”’ Compliance and audit requirements
- ๐Ÿ‘ฅ Large teams with clear role definitions
- ๐Ÿ“Š Predictable workflows and outcomes

**Choose Modern v2 when:**
- ๐Ÿš€ Startup or innovation-focused environment
- ๐Ÿง  AI-driven decision making required
- ๐Ÿ”„ Dynamic, adaptive workflows needed
- ๐ŸŒ Collaborative, context-sharing scenarios
- ๐ŸŽฏ Creative problem-solving and exploration

## ๐Ÿ“ Project Structure

```
jaygoga_orchestra/
โ”œโ”€โ”€ __init__.py          # Main orchestration entry point
โ”œโ”€โ”€ v1/                  # Classical Orchestration (Structured)
โ”‚   โ”œโ”€โ”€ __init__.py      # Agent, Task, Squad, Process
โ”‚   โ”œโ”€โ”€ agent.py         # Role-based agents
โ”‚   โ”œโ”€โ”€ team.py          # Structured squads
โ”‚   โ”œโ”€โ”€ task.py          # Defined tasks
โ”‚   โ”œโ”€โ”€ process.py       # Execution processes
โ”‚   โ”œโ”€โ”€ cli/             # Command-line tools
โ”‚   โ”œโ”€โ”€ tools/           # Agent tools and utilities
โ”‚   โ””โ”€โ”€ ...
โ”œโ”€โ”€ v2/                  # Modern Orchestration (Intelligent)
โ”‚   โ”œโ”€โ”€ __init__.py      # Agent, Team, Workflow
โ”‚   โ”œโ”€โ”€ agent/           # Intelligent agents
โ”‚   โ”œโ”€โ”€ team/            # Collaborative teams
โ”‚   โ”œโ”€โ”€ workflow/        # Dynamic workflows
โ”‚   โ”œโ”€โ”€ memory/          # Shared context
โ”‚   โ”œโ”€โ”€ reasoning/       # AI reasoning
โ”‚   โ””โ”€โ”€ ...
โ””โ”€โ”€ legacy/              # ๐Ÿงช Beta Features (Experimental)
    โ”œโ”€โ”€ README_BETA.md   # Beta documentation
    โ””โ”€โ”€ experimental/    # Cutting-edge features
```

## ๐Ÿงช Beta Features (Legacy/Experimental)

Our **legacy** directory contains experimental and beta features that showcase the future of AI orchestration:

```python
# ๐Ÿšง Beta Features - Available Soon!
from jaygoga_orchestra.legacy import ExperimentalAgent, AdvancedWorkflow

# Cutting-edge features in development
beta_agent = ExperimentalAgent(
    name="Krishna_BetaAgent",
    capabilities=["quantum_reasoning", "multi_dimensional_analysis"],
    status="beta"
)

# Advanced experimental workflows
experimental_flow = AdvancedWorkflow(
    name="Future_Intelligence",
    description="Next-generation AI orchestration patterns",
    beta_features=["auto_optimization", "self_healing", "predictive_scaling"]
)
```

**Beta Features Include:**
- ๐Ÿ”ฎ **Quantum Reasoning**: Advanced decision-making algorithms
- ๐ŸŒŠ **Self-Healing Workflows**: Automatic error recovery and optimization
- ๐ŸŽฏ **Predictive Scaling**: AI-driven resource management
- ๐Ÿง  **Neural Orchestration**: Brain-inspired coordination patterns
- โšก **Lightning Execution**: Ultra-fast processing capabilities

*These features are experimental and will be integrated into v3 in future releases.*

## ๐Ÿ”„ Migration & Integration

### ๐ŸŽฏ Getting Started with Govinda

```python
# Start with Classical v1 for structured workflows
from jaygoga_orchestra.v1 import Agent, Task, Squad, Process

# Upgrade to Modern v2 for intelligent orchestration
from jaygoga_orchestra.v2 import Agent, Team, Workflow

# Mix and match as needed
from jaygoga_orchestra.v1 import Task
from jaygoga_orchestra.v2 import Agent, Workflow
```

### ๐Ÿš€ Advanced Usage Examples

**Multi-Agent Research Pipeline (v1):**
```python
from jaygoga_orchestra.v1 import Agent, Task, Squad, Process

# Create research squad
researcher = Agent(role="Research Specialist", goal="Gather comprehensive data")
analyst = Agent(role="Data Analyst", goal="Analyze and synthesize findings")
writer = Agent(role="Technical Writer", goal="Create detailed reports")

# Define research pipeline
tasks = [
    Task(description="Research AI trends in 2024", agent=researcher),
    Task(description="Analyze research findings", agent=analyst),
    Task(description="Write comprehensive report", agent=writer)
]

research_squad = Squad(agents=[researcher, analyst, writer], tasks=tasks)
report = research_squad.execute()
```

**Intelligent Content Creation (v2):**
```python
from jaygoga_orchestra.v2 import Agent, Team, Workflow

# Create intelligent content team
content_team = Team([
    Agent(name="ContentStrategist", model="gpt-4"),
    Agent(name="CreativeWriter", model="claude-3"),
    Agent(name="SEOOptimizer", model="gpt-3.5-turbo")
])

result = content_team.run("Create a viral blog post about AI trends")
```

## ๐ŸŽจ Why JayGoga-Orchestra?

**JayGoga-Orchestra** represents the perfect harmony of AI agents working together like a well-conducted orchestra. Each agent plays its part while contributing to a greater symphony of intelligent automation.

**Core Principles:**
- ๐ŸŽญ **Master Orchestration**: Seamlessly coordinates multiple agents
- ๐Ÿง  **Intelligent Coordination**: Smart decision-making and adaptation
- โšก **High Performance**: Efficient execution with elegant simplicity
- ๐ŸŒŸ **Universal Compatibility**: Works across all domains and use cases
- ๐Ÿ›ก๏ธ **Enterprise Reliability**: Robust error handling and fault tolerance

## ๐Ÿค Community & Support

<!-- - ๐Ÿ“š **Documentation**: [docs.jaygoga.ai](https://docs.jaygoga.ai)
- ๐Ÿ’ฌ **Discord**: [Join our community](https://discord.gg/jaygoga-orchestra) -->
- ๐Ÿ› **Issues**: [GitHub Issues](https://github.com/AIMLDev726/jaygoga_orchestra/issues)
- ๐Ÿ“ง **Email**: aistudentlearn4@gmail.com

## ๐Ÿ“œ License

MIT License - see LICENSE file for details.

## ๐Ÿ™ Contributing

We welcome contributions from the community! Please read our contributing guidelines before submitting PRs.

---

**"Orchestrating AI agents in perfect harmony for intelligent automation."** ๐ŸŽผ

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/AIMLDev726/jaygoga_orchestra",
    "name": "jaygoga-orchestra",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "ai, agents, workflow, automation, llm, orchestration, jaygoga",
    "author": "AIMLDev726",
    "author_email": "AIMLDev726 <aistudentlearn4@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/09/0b/267b86229f827e3909526221e62c484ec71a9a27c9c0330bdaa50bbbff1b/jaygoga_orchestra-1.0.2.tar.gz",
    "platform": null,
    "description": "# JayGoga-Orchestra \ud83c\udfbc - Advanced AI Agent Orchestration Framework\r\n\r\n**JayGoga-Orchestra** is a powerful AI agent orchestration framework for intelligent automation. It provides seamless coordination of AI agents for complex workflows and enterprise-grade automation solutions.\r\n\r\n## \ud83c\udf1f Features\r\n\r\n- **\ud83c\udfad Dual Architecture**: Choose between Classical (v1) and Modern (v2) orchestration patterns\r\n- **\ud83d\udd2e Intelligent Orchestration**: Advanced agent coordination and workflow management\r\n- **\u26a1 High Performance**: Optimized for speed and scalability\r\n- **\ud83d\udee1\ufe0f Enterprise Ready**: Built for production environments\r\n- **\ud83c\udfa8 Flexible Design**: Adapt to any AI workflow requirement\r\n- **\ud83d\udcda Rich Documentation**: Comprehensive guides and examples\r\n- **\ud83d\udd04 Seamless Integration**: Easy integration with existing systems\r\n\r\n## \ud83d\ude80 Installation\r\n\r\n```bash\r\npip install jaygoga-orchestra\r\n```\r\n\r\n## \ud83c\udfaf Quick Start\r\n\r\n### \ud83c\udfdb\ufe0f Classical Orchestration (v1) - Structured & Reliable\r\n\r\nPerfect for **structured workflows**, **enterprise environments**, and **predictable processes**.\r\n\r\n```python\r\nfrom jaygoga_orchestra.v1 import Agent, Task, Squad, Process\r\n\r\n# Create specialized agents\r\nanalyst = Agent(\r\n    role=\"Senior Data Analyst\",\r\n    goal=\"Extract meaningful insights from complex datasets\",\r\n    backstory=\"You are a seasoned analyst with 10+ years of experience in data science and business intelligence.\"\r\n)\r\n\r\nresearcher = Agent(\r\n    role=\"Market Researcher\",\r\n    goal=\"Gather comprehensive market intelligence\",\r\n    backstory=\"You specialize in market analysis and competitive intelligence gathering.\"\r\n)\r\n\r\n# Define specific tasks\r\nanalysis_task = Task(\r\n    description=\"Analyze Q4 sales data and identify key trends, patterns, and anomalies\",\r\n    agent=analyst,\r\n    expected_output=\"Detailed analysis report with visualizations and recommendations\"\r\n)\r\n\r\nresearch_task = Task(\r\n    description=\"Research market conditions and competitor performance in Q4\",\r\n    agent=researcher,\r\n    expected_output=\"Market intelligence report with competitor analysis\"\r\n)\r\n\r\n# Create coordinated squad\r\nintelligence_squad = Squad(\r\n    agents=[analyst, researcher],\r\n    tasks=[analysis_task, research_task],\r\n    process=Process.sequential,\r\n    verbose=True\r\n)\r\n\r\n# Execute the orchestrated workflow\r\nresults = intelligence_squad.execute()\r\nprint(f\"Analysis Complete: {results}\")\r\n```\r\n\r\n### \ud83d\ude80 Modern Orchestration (v2) - Dynamic & Intelligent\r\n\r\nIdeal for **adaptive workflows**, **AI-driven decisions**, and **dynamic environments**.\r\n\r\n```python\r\nfrom jaygoga_orchestra.v2 import Agent, Team, Workflow\r\n\r\n# Create intelligent agents with advanced capabilities\r\ndata_agent = Agent(\r\n    name=\"JayGoga_DataSage\",\r\n    description=\"Advanced AI agent specialized in data analysis with deep learning capabilities\",\r\n    instructions=\"You are an expert data scientist with the ability to adapt your analysis approach based on data characteristics\",\r\n    model=\"gpt-4\",\r\n    tools=[\"python_interpreter\", \"data_visualization\", \"statistical_analysis\"]\r\n)\r\n\r\ninsight_agent = Agent(\r\n    name=\"JayGoga_InsightMaster\",\r\n    description=\"Strategic insight generator with business acumen\",\r\n    instructions=\"Transform data findings into actionable business strategies and recommendations\",\r\n    model=\"claude-3-sonnet\",\r\n    tools=[\"business_analysis\", \"report_generation\", \"strategic_planning\"]\r\n)\r\n\r\n# Create dynamic team with shared context\r\nintelligence_team = Team(\r\n    agents=[data_agent, insight_agent],\r\n    name=\"Strategic Intelligence Unit\",\r\n    description=\"Elite team for comprehensive business intelligence\",\r\n    shared_memory=True,\r\n    collaboration_mode=\"adaptive\"\r\n)\r\n\r\n\r\n# Execute with dynamic adaptation\r\nresults = intelligence_team.run(\r\n    task=\"Analyze our Q4 performance data and provide strategic recommendations for Q1\",\r\n    context={\"data_source\": \"sales_db\", \"priority\": \"high\", \"deadline\": \"2024-01-15\"}\r\n)\r\n\r\nprint(f\"Strategic Analysis: {results.summary}\")\r\nprint(f\"Key Insights: {results.insights}\")\r\nprint(f\"Recommendations: {results.recommendations}\")\r\n```\r\n\r\n## \ud83c\udfd7\ufe0f Architecture Comparison\r\n\r\n| Feature | Classical v1 | Modern v2 | Best For |\r\n|---------|-------------|-----------|----------|\r\n| **Structure** | Hierarchical, Role-based | Dynamic, Capability-based | v1: Enterprise, v2: Startups |\r\n| **Execution** | Sequential/Parallel | Adaptive Intelligence | v1: Predictable, v2: Creative |\r\n| **Memory** | Task-scoped | Shared Context | v1: Privacy, v2: Collaboration |\r\n| **Scalability** | Linear | Exponential | v1: Controlled, v2: Rapid growth |\r\n| **Learning** | Rule-based | AI-driven | v1: Compliance, v2: Innovation |\r\n| **Complexity** | Structured | Self-organizing | v1: Governance, v2: Agility |\r\n\r\n### \ud83c\udfad When to Choose Which Version\r\n\r\n**Choose Classical v1 when:**\r\n- \ud83c\udfe2 Enterprise environment with strict governance\r\n- \ud83d\udccb Well-defined, repeatable processes\r\n- \ud83d\udd12 Compliance and audit requirements\r\n- \ud83d\udc65 Large teams with clear role definitions\r\n- \ud83d\udcca Predictable workflows and outcomes\r\n\r\n**Choose Modern v2 when:**\r\n- \ud83d\ude80 Startup or innovation-focused environment\r\n- \ud83e\udde0 AI-driven decision making required\r\n- \ud83d\udd04 Dynamic, adaptive workflows needed\r\n- \ud83c\udf10 Collaborative, context-sharing scenarios\r\n- \ud83c\udfaf Creative problem-solving and exploration\r\n\r\n## \ud83d\udcc1 Project Structure\r\n\r\n```\r\njaygoga_orchestra/\r\n\u251c\u2500\u2500 __init__.py          # Main orchestration entry point\r\n\u251c\u2500\u2500 v1/                  # Classical Orchestration (Structured)\r\n\u2502   \u251c\u2500\u2500 __init__.py      # Agent, Task, Squad, Process\r\n\u2502   \u251c\u2500\u2500 agent.py         # Role-based agents\r\n\u2502   \u251c\u2500\u2500 team.py          # Structured squads\r\n\u2502   \u251c\u2500\u2500 task.py          # Defined tasks\r\n\u2502   \u251c\u2500\u2500 process.py       # Execution processes\r\n\u2502   \u251c\u2500\u2500 cli/             # Command-line tools\r\n\u2502   \u251c\u2500\u2500 tools/           # Agent tools and utilities\r\n\u2502   \u2514\u2500\u2500 ...\r\n\u251c\u2500\u2500 v2/                  # Modern Orchestration (Intelligent)\r\n\u2502   \u251c\u2500\u2500 __init__.py      # Agent, Team, Workflow\r\n\u2502   \u251c\u2500\u2500 agent/           # Intelligent agents\r\n\u2502   \u251c\u2500\u2500 team/            # Collaborative teams\r\n\u2502   \u251c\u2500\u2500 workflow/        # Dynamic workflows\r\n\u2502   \u251c\u2500\u2500 memory/          # Shared context\r\n\u2502   \u251c\u2500\u2500 reasoning/       # AI reasoning\r\n\u2502   \u2514\u2500\u2500 ...\r\n\u2514\u2500\u2500 legacy/              # \ud83e\uddea Beta Features (Experimental)\r\n    \u251c\u2500\u2500 README_BETA.md   # Beta documentation\r\n    \u2514\u2500\u2500 experimental/    # Cutting-edge features\r\n```\r\n\r\n## \ud83e\uddea Beta Features (Legacy/Experimental)\r\n\r\nOur **legacy** directory contains experimental and beta features that showcase the future of AI orchestration:\r\n\r\n```python\r\n# \ud83d\udea7 Beta Features - Available Soon!\r\nfrom jaygoga_orchestra.legacy import ExperimentalAgent, AdvancedWorkflow\r\n\r\n# Cutting-edge features in development\r\nbeta_agent = ExperimentalAgent(\r\n    name=\"Krishna_BetaAgent\",\r\n    capabilities=[\"quantum_reasoning\", \"multi_dimensional_analysis\"],\r\n    status=\"beta\"\r\n)\r\n\r\n# Advanced experimental workflows\r\nexperimental_flow = AdvancedWorkflow(\r\n    name=\"Future_Intelligence\",\r\n    description=\"Next-generation AI orchestration patterns\",\r\n    beta_features=[\"auto_optimization\", \"self_healing\", \"predictive_scaling\"]\r\n)\r\n```\r\n\r\n**Beta Features Include:**\r\n- \ud83d\udd2e **Quantum Reasoning**: Advanced decision-making algorithms\r\n- \ud83c\udf0a **Self-Healing Workflows**: Automatic error recovery and optimization\r\n- \ud83c\udfaf **Predictive Scaling**: AI-driven resource management\r\n- \ud83e\udde0 **Neural Orchestration**: Brain-inspired coordination patterns\r\n- \u26a1 **Lightning Execution**: Ultra-fast processing capabilities\r\n\r\n*These features are experimental and will be integrated into v3 in future releases.*\r\n\r\n## \ud83d\udd04 Migration & Integration\r\n\r\n### \ud83c\udfaf Getting Started with Govinda\r\n\r\n```python\r\n# Start with Classical v1 for structured workflows\r\nfrom jaygoga_orchestra.v1 import Agent, Task, Squad, Process\r\n\r\n# Upgrade to Modern v2 for intelligent orchestration\r\nfrom jaygoga_orchestra.v2 import Agent, Team, Workflow\r\n\r\n# Mix and match as needed\r\nfrom jaygoga_orchestra.v1 import Task\r\nfrom jaygoga_orchestra.v2 import Agent, Workflow\r\n```\r\n\r\n### \ud83d\ude80 Advanced Usage Examples\r\n\r\n**Multi-Agent Research Pipeline (v1):**\r\n```python\r\nfrom jaygoga_orchestra.v1 import Agent, Task, Squad, Process\r\n\r\n# Create research squad\r\nresearcher = Agent(role=\"Research Specialist\", goal=\"Gather comprehensive data\")\r\nanalyst = Agent(role=\"Data Analyst\", goal=\"Analyze and synthesize findings\")\r\nwriter = Agent(role=\"Technical Writer\", goal=\"Create detailed reports\")\r\n\r\n# Define research pipeline\r\ntasks = [\r\n    Task(description=\"Research AI trends in 2024\", agent=researcher),\r\n    Task(description=\"Analyze research findings\", agent=analyst),\r\n    Task(description=\"Write comprehensive report\", agent=writer)\r\n]\r\n\r\nresearch_squad = Squad(agents=[researcher, analyst, writer], tasks=tasks)\r\nreport = research_squad.execute()\r\n```\r\n\r\n**Intelligent Content Creation (v2):**\r\n```python\r\nfrom jaygoga_orchestra.v2 import Agent, Team, Workflow\r\n\r\n# Create intelligent content team\r\ncontent_team = Team([\r\n    Agent(name=\"ContentStrategist\", model=\"gpt-4\"),\r\n    Agent(name=\"CreativeWriter\", model=\"claude-3\"),\r\n    Agent(name=\"SEOOptimizer\", model=\"gpt-3.5-turbo\")\r\n])\r\n\r\nresult = content_team.run(\"Create a viral blog post about AI trends\")\r\n```\r\n\r\n## \ud83c\udfa8 Why JayGoga-Orchestra?\r\n\r\n**JayGoga-Orchestra** represents the perfect harmony of AI agents working together like a well-conducted orchestra. Each agent plays its part while contributing to a greater symphony of intelligent automation.\r\n\r\n**Core Principles:**\r\n- \ud83c\udfad **Master Orchestration**: Seamlessly coordinates multiple agents\r\n- \ud83e\udde0 **Intelligent Coordination**: Smart decision-making and adaptation\r\n- \u26a1 **High Performance**: Efficient execution with elegant simplicity\r\n- \ud83c\udf1f **Universal Compatibility**: Works across all domains and use cases\r\n- \ud83d\udee1\ufe0f **Enterprise Reliability**: Robust error handling and fault tolerance\r\n\r\n## \ud83e\udd1d Community & Support\r\n\r\n<!-- - \ud83d\udcda **Documentation**: [docs.jaygoga.ai](https://docs.jaygoga.ai)\r\n- \ud83d\udcac **Discord**: [Join our community](https://discord.gg/jaygoga-orchestra) -->\r\n- \ud83d\udc1b **Issues**: [GitHub Issues](https://github.com/AIMLDev726/jaygoga_orchestra/issues)\r\n- \ud83d\udce7 **Email**: aistudentlearn4@gmail.com\r\n\r\n## \ud83d\udcdc License\r\n\r\nMIT License - see LICENSE file for details.\r\n\r\n## \ud83d\ude4f Contributing\r\n\r\nWe welcome contributions from the community! Please read our contributing guidelines before submitting PRs.\r\n\r\n---\r\n\r\n**\"Orchestrating AI agents in perfect harmony for intelligent automation.\"** \ud83c\udfbc\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "JayGoga-Orchestra - Advanced AI Agent Orchestration Framework",
    "version": "1.0.2",
    "project_urls": {
        "Documentation": "https://docs.jaygoga.ai",
        "Homepage": "https://github.com/AIMLDev726/jaygoga_orchestra",
        "Issues": "https://github.com/AIMLDev726/jaygoga_orchestra/issues",
        "Repository": "https://github.com/AIMLDev726/jaygoga_orchestra"
    },
    "split_keywords": [
        "ai",
        " agents",
        " workflow",
        " automation",
        " llm",
        " orchestration",
        " jaygoga"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2c91ce8dc538e506ac12f510b8f55aeef6abf772fba514415b3d90f3329eddbe",
                "md5": "665c48fe5cdcd7f247cc0f8b7de2f6b5",
                "sha256": "6bde357c2509fcdb3191bf1c326f11f67f44b018830502ab573be6e2342e7d2e"
            },
            "downloads": -1,
            "filename": "jaygoga_orchestra-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "665c48fe5cdcd7f247cc0f8b7de2f6b5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 1609618,
            "upload_time": "2025-08-30T19:35:22",
            "upload_time_iso_8601": "2025-08-30T19:35:22.457666Z",
            "url": "https://files.pythonhosted.org/packages/2c/91/ce8dc538e506ac12f510b8f55aeef6abf772fba514415b3d90f3329eddbe/jaygoga_orchestra-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "090b267b86229f827e3909526221e62c484ec71a9a27c9c0330bdaa50bbbff1b",
                "md5": "9a773467508bd26586859ec26ae57648",
                "sha256": "faa392ebecbeacdcf1c83e765cd8a8b1dae32b59496439cc146c6d9d38ddf920"
            },
            "downloads": -1,
            "filename": "jaygoga_orchestra-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "9a773467508bd26586859ec26ae57648",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 1166434,
            "upload_time": "2025-08-30T19:35:24",
            "upload_time_iso_8601": "2025-08-30T19:35:24.586653Z",
            "url": "https://files.pythonhosted.org/packages/09/0b/267b86229f827e3909526221e62c484ec71a9a27c9c0330bdaa50bbbff1b/jaygoga_orchestra-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-30 19:35:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AIMLDev726",
    "github_project": "jaygoga_orchestra",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "pydantic",
            "specs": [
                [
                    ">=",
                    "2.4.2"
                ]
            ]
        },
        {
            "name": "openai",
            "specs": [
                [
                    ">=",
                    "1.13.3"
                ]
            ]
        },
        {
            "name": "litellm",
            "specs": [
                [
                    "==",
                    "1.74.9"
                ]
            ]
        },
        {
            "name": "instructor",
            "specs": [
                [
                    ">=",
                    "1.3.3"
                ]
            ]
        },
        {
            "name": "pdfplumber",
            "specs": [
                [
                    ">=",
                    "0.11.4"
                ]
            ]
        },
        {
            "name": "regex",
            "specs": [
                [
                    ">=",
                    "2024.9.11"
                ]
            ]
        },
        {
            "name": "opentelemetry-api",
            "specs": [
                [
                    ">=",
                    "1.30.0"
                ]
            ]
        },
        {
            "name": "opentelemetry-sdk",
            "specs": [
                [
                    ">=",
                    "1.30.0"
                ]
            ]
        },
        {
            "name": "opentelemetry-exporter-otlp-proto-http",
            "specs": [
                [
                    ">=",
                    "1.30.0"
                ]
            ]
        },
        {
            "name": "chromadb",
            "specs": [
                [
                    ">=",
                    "0.5.23"
                ]
            ]
        },
        {
            "name": "tokenizers",
            "specs": [
                [
                    ">=",
                    "0.20.3"
                ]
            ]
        },
        {
            "name": "onnxruntime",
            "specs": [
                [
                    "==",
                    "1.22.0"
                ]
            ]
        },
        {
            "name": "openpyxl",
            "specs": [
                [
                    ">=",
                    "3.1.5"
                ]
            ]
        },
        {
            "name": "pyvis",
            "specs": [
                [
                    ">=",
                    "0.3.2"
                ]
            ]
        },
        {
            "name": "python-dotenv",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "pyjwt",
            "specs": [
                [
                    ">=",
                    "2.9.0"
                ]
            ]
        },
        {
            "name": "click",
            "specs": [
                [
                    ">=",
                    "8.1.7"
                ]
            ]
        },
        {
            "name": "appdirs",
            "specs": [
                [
                    ">=",
                    "1.4.4"
                ]
            ]
        },
        {
            "name": "jsonref",
            "specs": [
                [
                    ">=",
                    "1.1.0"
                ]
            ]
        },
        {
            "name": "json-repair",
            "specs": [
                [
                    "==",
                    "0.25.2"
                ]
            ]
        },
        {
            "name": "uv",
            "specs": [
                [
                    ">=",
                    "0.4.25"
                ]
            ]
        },
        {
            "name": "tomli-w",
            "specs": [
                [
                    ">=",
                    "1.1.0"
                ]
            ]
        },
        {
            "name": "tomli",
            "specs": [
                [
                    ">=",
                    "2.0.2"
                ]
            ]
        },
        {
            "name": "blinker",
            "specs": [
                [
                    ">=",
                    "1.9.0"
                ]
            ]
        },
        {
            "name": "json5",
            "specs": [
                [
                    ">=",
                    "0.10.0"
                ]
            ]
        },
        {
            "name": "portalocker",
            "specs": [
                [
                    "==",
                    "2.7.0"
                ]
            ]
        },
        {
            "name": "rich",
            "specs": [
                [
                    ">=",
                    "13.0.0"
                ]
            ]
        },
        {
            "name": "typing-extensions",
            "specs": [
                [
                    ">=",
                    "4.0.0"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.25.0"
                ]
            ]
        },
        {
            "name": "anthropic",
            "specs": [
                [
                    ">=",
                    "0.3.0"
                ]
            ]
        },
        {
            "name": "langchain",
            "specs": [
                [
                    ">=",
                    "0.1.0"
                ]
            ]
        },
        {
            "name": "langchain-community",
            "specs": [
                [
                    ">=",
                    "0.0.1"
                ]
            ]
        },
        {
            "name": "langchain-openai",
            "specs": [
                [
                    ">=",
                    "0.0.1"
                ]
            ]
        },
        {
            "name": "tiktoken",
            "specs": [
                [
                    ">=",
                    "0.5.0"
                ]
            ]
        },
        {
            "name": "tenacity",
            "specs": [
                [
                    ">=",
                    "8.0.0"
                ]
            ]
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    ">=",
                    "6.0.0"
                ]
            ]
        },
        {
            "name": "jsonschema",
            "specs": [
                [
                    ">=",
                    "4.0.0"
                ]
            ]
        },
        {
            "name": "sqlalchemy",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "aiofiles",
            "specs": [
                [
                    ">=",
                    "23.0.0"
                ]
            ]
        },
        {
            "name": "httpx",
            "specs": [
                [
                    ">=",
                    "0.24.0"
                ]
            ]
        },
        {
            "name": "aiohttp",
            "specs": [
                [
                    ">=",
                    "3.8.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "2.2.3"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.24.0"
                ]
            ]
        },
        {
            "name": "pypdf",
            "specs": [
                [
                    ">=",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "python-docx",
            "specs": [
                [
                    ">=",
                    "0.8.11"
                ]
            ]
        },
        {
            "name": "markdown",
            "specs": [
                [
                    ">=",
                    "3.4.0"
                ]
            ]
        },
        {
            "name": "pgvector",
            "specs": [
                [
                    ">=",
                    "0.2.0"
                ]
            ]
        },
        {
            "name": "qdrant-client",
            "specs": [
                [
                    ">=",
                    "1.14.3"
                ]
            ]
        },
        {
            "name": "pinecone-client",
            "specs": [
                [
                    ">=",
                    "2.2.0"
                ]
            ]
        },
        {
            "name": "weaviate-client",
            "specs": [
                [
                    ">=",
                    "3.15.0"
                ]
            ]
        },
        {
            "name": "sentence-transformers",
            "specs": [
                [
                    ">=",
                    "2.2.0"
                ]
            ]
        },
        {
            "name": "huggingface-hub",
            "specs": [
                [
                    ">=",
                    "0.16.0"
                ]
            ]
        },
        {
            "name": "asyncio",
            "specs": [
                [
                    ">=",
                    "3.4.3"
                ]
            ]
        }
    ],
    "lcname": "jaygoga-orchestra"
}
        
Elapsed time: 0.49230s