medaid


Namemedaid JSON
Version 0.1.9 PyPI version JSON
download
home_pagehttps://github.com/DeptuchMateusz/medAId
SummaryAutomated Machine Learning for medical use
upload_time2025-01-19 22:53:16
maintainerNone
docs_urlNone
authorZofia Kamińska, Karolina Dunal, Mateusz Deptuch
requires_python>=3.8
licenseMIT
keywords automated machine learning automl machine learning medical data
VCS
bugtrack_url
requirements setuptools pandas numpy scikit-learn matplotlib fancyimpute reportlab fpdf shap seaborn dtreeviz xgboost lightgbm tqdm setuptools ipython ipywidgets supertree lime
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MedAId :stethoscope:



This is a Python package designed for working with tabular data. While it is optimized for medical data use cases, it can be adapted to work with any kind of tabular dataset.



## Installation



This package is available on PyPI. Clone the repository and install the package using the following commands:



```bash

pip install medaid

```

## More Info

For more detailed information about the package navigate to `notebook.ipynb` (polish version) or `notebook_eng.ipynb` (english version) file.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/DeptuchMateusz/medAId",
    "name": "medaid",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "automated machine learning, automl, machine learning, medical data",
    "author": "Zofia Kami\u0144ska, Karolina Dunal, Mateusz Deptuch",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/83/3b/6fca206dd5bf4df3030e744d3bc3aac48e5c6f732ea099a67aa2def97ecb/medaid-0.1.9.tar.gz",
    "platform": null,
    "description": "# MedAId :stethoscope:\r\r\n\r\r\nThis is a Python package designed for working with tabular data. While it is optimized for medical data use cases, it can be adapted to work with any kind of tabular dataset.\r\r\n\r\r\n## Installation\r\r\n\r\r\nThis package is available on PyPI. Clone the repository and install the package using the following commands:\r\r\n\r\r\n```bash\r\r\npip install medaid\r\r\n```\r\r\n## More Info\r\r\nFor more detailed information about the package navigate to `notebook.ipynb` (polish version) or `notebook_eng.ipynb` (english version) file.\r\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Automated Machine Learning for medical use",
    "version": "0.1.9",
    "project_urls": {
        "Homepage": "https://github.com/DeptuchMateusz/medAId"
    },
    "split_keywords": [
        "automated machine learning",
        " automl",
        " machine learning",
        " medical data"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "833b6fca206dd5bf4df3030e744d3bc3aac48e5c6f732ea099a67aa2def97ecb",
                "md5": "c5695a09ca748865cc6f0b1e4aaa1f8e",
                "sha256": "28576e2d91c71ddab21ccff19d1f457880ea9e12f4d5bba9c2c4a7acb5083c33"
            },
            "downloads": -1,
            "filename": "medaid-0.1.9.tar.gz",
            "has_sig": false,
            "md5_digest": "c5695a09ca748865cc6f0b1e4aaa1f8e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 28493,
            "upload_time": "2025-01-19T22:53:16",
            "upload_time_iso_8601": "2025-01-19T22:53:16.967679Z",
            "url": "https://files.pythonhosted.org/packages/83/3b/6fca206dd5bf4df3030e744d3bc3aac48e5c6f732ea099a67aa2def97ecb/medaid-0.1.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-19 22:53:16",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "DeptuchMateusz",
    "github_project": "medAId",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "setuptools",
            "specs": [
                [
                    ">=",
                    "40.8.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.5.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    "==",
                    "1.5.2"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.5.0"
                ]
            ]
        },
        {
            "name": "fancyimpute",
            "specs": [
                [
                    ">=",
                    "0.6.0"
                ]
            ]
        },
        {
            "name": "reportlab",
            "specs": [
                [
                    ">=",
                    "3.6.0"
                ]
            ]
        },
        {
            "name": "fpdf",
            "specs": [
                [
                    ">=",
                    "1.7.0"
                ]
            ]
        },
        {
            "name": "shap",
            "specs": [
                [
                    ">=",
                    "0.39.0"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    "~=",
                    "0.13.2"
                ]
            ]
        },
        {
            "name": "dtreeviz",
            "specs": [
                [
                    "~=",
                    "2.2.2"
                ]
            ]
        },
        {
            "name": "xgboost",
            "specs": [
                [
                    "~=",
                    "2.1.3"
                ]
            ]
        },
        {
            "name": "lightgbm",
            "specs": [
                [
                    "~=",
                    "4.5.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "~=",
                    "4.67.1"
                ]
            ]
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    "~=",
                    "75.1.0"
                ]
            ]
        },
        {
            "name": "ipython",
            "specs": [
                [
                    ">=",
                    "8.0.0"
                ]
            ]
        },
        {
            "name": "ipywidgets",
            "specs": [
                [
                    ">=",
                    "8.0.0"
                ]
            ]
        },
        {
            "name": "supertree",
            "specs": []
        },
        {
            "name": "lime",
            "specs": [
                [
                    ">=",
                    "0.2.0"
                ]
            ]
        }
    ],
    "lcname": "medaid"
}
        
Elapsed time: 0.61341s