# MedAId :stethoscope:
This is a Python package designed for working with tabular data. While it is optimized for medical data use cases, it can be adapted to work with any kind of tabular dataset.
## Installation
This package is available on PyPI. Clone the repository and install the package using the following commands:
```bash
pip install medaid
```
## More Info
For more detailed information about the package navigate to `notebook.ipynb` (polish version) or `notebook_eng.ipynb` (english version) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/DeptuchMateusz/medAId",
"name": "medaid",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "automated machine learning, automl, machine learning, medical data",
"author": "Zofia Kami\u0144ska, Karolina Dunal, Mateusz Deptuch",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/83/3b/6fca206dd5bf4df3030e744d3bc3aac48e5c6f732ea099a67aa2def97ecb/medaid-0.1.9.tar.gz",
"platform": null,
"description": "# MedAId :stethoscope:\r\r\n\r\r\nThis is a Python package designed for working with tabular data. While it is optimized for medical data use cases, it can be adapted to work with any kind of tabular dataset.\r\r\n\r\r\n## Installation\r\r\n\r\r\nThis package is available on PyPI. Clone the repository and install the package using the following commands:\r\r\n\r\r\n```bash\r\r\npip install medaid\r\r\n```\r\r\n## More Info\r\r\nFor more detailed information about the package navigate to `notebook.ipynb` (polish version) or `notebook_eng.ipynb` (english version) file.\r\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Automated Machine Learning for medical use",
"version": "0.1.9",
"project_urls": {
"Homepage": "https://github.com/DeptuchMateusz/medAId"
},
"split_keywords": [
"automated machine learning",
" automl",
" machine learning",
" medical data"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "833b6fca206dd5bf4df3030e744d3bc3aac48e5c6f732ea099a67aa2def97ecb",
"md5": "c5695a09ca748865cc6f0b1e4aaa1f8e",
"sha256": "28576e2d91c71ddab21ccff19d1f457880ea9e12f4d5bba9c2c4a7acb5083c33"
},
"downloads": -1,
"filename": "medaid-0.1.9.tar.gz",
"has_sig": false,
"md5_digest": "c5695a09ca748865cc6f0b1e4aaa1f8e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 28493,
"upload_time": "2025-01-19T22:53:16",
"upload_time_iso_8601": "2025-01-19T22:53:16.967679Z",
"url": "https://files.pythonhosted.org/packages/83/3b/6fca206dd5bf4df3030e744d3bc3aac48e5c6f732ea099a67aa2def97ecb/medaid-0.1.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-19 22:53:16",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "DeptuchMateusz",
"github_project": "medAId",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "setuptools",
"specs": [
[
">=",
"40.8.0"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"1.5.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.21.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
"==",
"1.5.2"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.5.0"
]
]
},
{
"name": "fancyimpute",
"specs": [
[
">=",
"0.6.0"
]
]
},
{
"name": "reportlab",
"specs": [
[
">=",
"3.6.0"
]
]
},
{
"name": "fpdf",
"specs": [
[
">=",
"1.7.0"
]
]
},
{
"name": "shap",
"specs": [
[
">=",
"0.39.0"
]
]
},
{
"name": "seaborn",
"specs": [
[
"~=",
"0.13.2"
]
]
},
{
"name": "dtreeviz",
"specs": [
[
"~=",
"2.2.2"
]
]
},
{
"name": "xgboost",
"specs": [
[
"~=",
"2.1.3"
]
]
},
{
"name": "lightgbm",
"specs": [
[
"~=",
"4.5.0"
]
]
},
{
"name": "tqdm",
"specs": [
[
"~=",
"4.67.1"
]
]
},
{
"name": "setuptools",
"specs": [
[
"~=",
"75.1.0"
]
]
},
{
"name": "ipython",
"specs": [
[
">=",
"8.0.0"
]
]
},
{
"name": "ipywidgets",
"specs": [
[
">=",
"8.0.0"
]
]
},
{
"name": "supertree",
"specs": []
},
{
"name": "lime",
"specs": [
[
">=",
"0.2.0"
]
]
}
],
"lcname": "medaid"
}